1.已知角α的終邊上一點(diǎn)的坐標(biāo)為(-sin25°,cos25°),則角α的最小正值為115°.

分析 利用任意角的三角函數(shù)的定義,誘導(dǎo)公式,求得角α的最小正值.

解答 解:∵角α的終邊上一點(diǎn)的坐標(biāo)為(-sin25°,cos25°),為第二象限角,
且tanα=$\frac{cos25°}{-sin25°}$=-cot25°=-tan65°=tan(180°-65°)=tan115°,
則角α的最小正值為115°,
故答案為:115°.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若直線l的斜率為-1,則直線l的傾斜角為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽出了一個(gè)容量為n的樣本,其頻率分布直方圖如圖所示,其中支出在[50,60)元的同學(xué)有30人,則n的值為
( 。
A.300B.200C.150D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)等比數(shù)列{an}中,Sn是前n項(xiàng)和,若8a2-a5=0,則$\frac{{S}_{6}}{{S}_{3}}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.甲乙比賽,先勝三局可贏得獎(jiǎng)金1千元.當(dāng)甲勝兩局乙勝一局時(shí)因故終止比賽.假設(shè)每局勝率甲乙都是0.5,現(xiàn)在獎(jiǎng)金應(yīng)該按怎樣的比例分配給甲乙( 。
A.1:1B.2:1C.3:1D.4:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.甲、乙、丙、丁4人進(jìn)行籃球訓(xùn)練,互相傳球,要求每人接球后立即傳給別人,開始由甲發(fā)球,并作為第一次傳球,第四次傳球后,球又回到甲手中的傳球方式共有21種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在東辰學(xué)校的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了90個(gè)面包,以x(單位:個(gè),60≤x≤110)表示面包的需求量,T(單位:元)表示利潤.
(Ⅰ)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求食堂每天面包需求量的平均數(shù).
(Ⅱ)求T關(guān)于x函數(shù)解析式;
(III)根據(jù)直方圖估計(jì)利潤T不少于100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且an2+an=2Sn,n∈N*
(1)求a1及an;
(2)求滿足Sn>210時(shí)n的最小值;
(3)令bn=4${\;}^{{a}_{n}}$,證明:對(duì)一切正整數(shù)n,都有$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{n}}$<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若二項(xiàng)式(x-$\frac{2}{\sqrt{x}}$)n的展開式中只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中含x2項(xiàng)的系數(shù)為1120.

查看答案和解析>>

同步練習(xí)冊(cè)答案