3.函數(shù)f(x)=log2(-2x+4)的定義域是( 。
A.{x|x>-2}B.{x|x≥-2}C.{x|x<2}D.{x|x≤-2}

分析 根據(jù)對數(shù)函數(shù)的性質得到關于x的表達式,解出即可.

解答 解:由題意得:
-2x+4>0,解得:x<2,
故選:C.

點評 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)的性質,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.在四邊形ABCD中,M為BD上靠近D的三等分點,且滿足$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,則實數(shù)x,y的值分別為( 。
A.$\frac{1}{3}$,$\frac{2}{3}$B.$\frac{2}{3}$,$\frac{1}{3}$C.$\frac{1}{2}$,$\frac{1}{2}$D.$\frac{1}{4}$,$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(1)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(2)若某2013階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式;
(3)記n階“期待數(shù)列”的前k項和為Sk(k=1,2,3,…,n),試證:|Sk|≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)y=log2[$\sqrt{2}$sin(2x-$\frac{π}{3}$)]+$\sqrt{2-{x}^{2}}$的定義域為$[-\sqrt{2},-\frac{π}{3})∪(\frac{π}{6},\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在平面直角坐標系中,定義$\left\{\begin{array}{l}{{x}_{n+1}={y}_{n}-{x}_{n}}\\{{y}_{n+1}={y}_{n}+{x}_{n}}\end{array}\right.$(n∈N*為點Pn(xn,yn)到點Pn+1(xn+1,yn+1)的一個變換,我們把它稱為點變換.已知P1(0,1),P2(x2,y2),…,Pn(xn,yn),Pn+1(xn+1,yn+1)是經過點變換得到的一列點.設an=|PnPn+1|,數(shù)列{an}的前n項和為Sn,那么$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{a}_{n}}$的值為=2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.“點P(tanα,cosα)在第二象限”是“角α的終邊在第四象限”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.空間四邊形OABC各邊以及AC、BO的長都是1,點D、E分別是邊OA,BC的中點,連接DE.
(1)求直線AC與OB所成角;
(2)計算DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖,正方形ABCD邊長為2,E、F分別為AD、CD的中點,沿EF將正方形ABCD剪成兩片,將這樣的圖片對接在正六邊形各邊上,如圖所示,再將所得圖片沿虛線折起,圍成一個幾何體,則此幾何體的體積( 。
A.3B.4C.3$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知定義域為R的奇函數(shù)滿足f(x+4)=f(x),且x∈(0,2)時,f(x)=ln(x2+a),a>0,若函數(shù)f(x)在區(qū)間[-4,4]上有9個零點,則實數(shù)a的取值范圍為(0,1).

查看答案和解析>>

同步練習冊答案