11.在半徑為10cm的球面上有A,B,C三點(diǎn),如果AB=8$\sqrt{3}$,∠ACB=60°,則球心O到平面ABC的距離為( 。
A.2cmB.4cmC.6cmD.8cm

分析 設(shè)A、B、C三點(diǎn)所在圓的半徑為r,在△ABC中,由正弦定理可求得其外接圓的直徑,由此幾何體的結(jié)構(gòu)特征知,用勾股定理求球心O到平面ABC的距離即可.

解答 解:設(shè)A、B、C三點(diǎn)所在圓的半徑為r,由題意在△ABC中,AB=8$\sqrt{3}$cm,∠ACB=60°,
由正弦定理可求得其外接圓的直徑為$\frac{8\sqrt{3}}{sin60°}$=16,即半徑為r=8cm
 又球心在面ABC上的射影是△ABC外心,
故球心到面的距離,求的半徑、三角形外接圓的半徑三者構(gòu)成了一個(gè)直角三角形
 設(shè)球面距為d,球半徑為10cm,
故有d2=102-82=36,
解得d=6cm.
故選C.

點(diǎn)評(píng) 本題考點(diǎn)是點(diǎn)、線、面間的距離的計(jì)算,考查球中球面距的計(jì)算,此類問(wèn)題建立方程的通常是根據(jù)由球面距、球半徑、截面圓的半徑三者構(gòu)成的直角三角形,由勾股定理建立函數(shù)模型求值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\sqrt{2}$,設(shè)E、F分別為PC、BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:平面PAB⊥平面PCD;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任意一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為4,且離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓的右焦點(diǎn)為F,是否存在直線l,使得直線l與橢圓C相交于A,B兩點(diǎn),滿足兩個(gè)條件:①線段AB的中點(diǎn)P在直線x+2y=0上;②△FAB的面積有最大值.如果存在,請(qǐng)求出面積的最大值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且sin2A+sin2B+sin2C=$\frac{1}{2}$,面積S∈[1,2],則下列不等式一定成立的是( 。
A.(a+b)>16$\sqrt{2}$B.bc(b+c)>8C.6≤abc≤12D.12≤abc≤24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn)分別為A1,A2,且|A1A2|=4,P為橢圓上異于A1,A2的點(diǎn),PA1和PA2的斜率之積為-$\frac{3}{4}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為橢圓中心,M,N是橢圓上異于頂點(diǎn)的兩個(gè)動(dòng)點(diǎn),求△MON面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.一個(gè)平面內(nèi)的8個(gè)點(diǎn),若只有4個(gè)點(diǎn)共圓,其余任何4點(diǎn)不共圓,那么這8個(gè)點(diǎn)最多確定的圓的個(gè)數(shù)為( 。
A.${C}_{4}^{3}$•${C}_{4}^{4}$B.${C}_{8}^{3}$-${C}_{4}^{3}$C.2${C}_{4}^{1}$•${C}_{4}^{2}$+${C}_{4}^{3}$D.${C}_{8}^{3}$-${C}_{4}^{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,AB=AC,AC邊上的中線長(zhǎng)為9,當(dāng)△ABC的面積最大時(shí),AB的長(zhǎng)為( 。
A.9$\sqrt{3}$B.9$\sqrt{5}$C.6$\sqrt{3}$D.6$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=xlnx,g(x)=x3+ax2-2x+3.
(1)如果函數(shù)g(x)的單調(diào)遞減區(qū)間為(-1,$\frac{2}{3}$),求函數(shù)y=g(x)的圖象在點(diǎn)P(-$\frac{1}{2}$,g(-$\frac{1}{2}$))處的切線方程;
(2)若不等式2f(x)≤g′(x)+3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐A-DCBE中,AC⊥BC,底面DCBE為平行四邊形,DC⊥平面ABC.
(Ⅰ)求證:DE⊥平面ACD; 
(Ⅱ)若∠ABC=30°,AB=2,EB=$\sqrt{3}$,求三棱錐B-ACE的體積;
(Ⅲ)設(shè)平面ADE∩平面ABC=直線l,求證:BC∥l.

查看答案和解析>>

同步練習(xí)冊(cè)答案