A. | 2cm | B. | 4cm | C. | 6cm | D. | 8cm |
分析 設(shè)A、B、C三點(diǎn)所在圓的半徑為r,在△ABC中,由正弦定理可求得其外接圓的直徑,由此幾何體的結(jié)構(gòu)特征知,用勾股定理求球心O到平面ABC的距離即可.
解答 解:設(shè)A、B、C三點(diǎn)所在圓的半徑為r,由題意在△ABC中,AB=8$\sqrt{3}$cm,∠ACB=60°,
由正弦定理可求得其外接圓的直徑為$\frac{8\sqrt{3}}{sin60°}$=16,即半徑為r=8cm
又球心在面ABC上的射影是△ABC外心,
故球心到面的距離,求的半徑、三角形外接圓的半徑三者構(gòu)成了一個(gè)直角三角形
設(shè)球面距為d,球半徑為10cm,
故有d2=102-82=36,
解得d=6cm.
故選C.
點(diǎn)評(píng) 本題考點(diǎn)是點(diǎn)、線、面間的距離的計(jì)算,考查球中球面距的計(jì)算,此類問(wèn)題建立方程的通常是根據(jù)由球面距、球半徑、截面圓的半徑三者構(gòu)成的直角三角形,由勾股定理建立函數(shù)模型求值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (a+b)>16$\sqrt{2}$ | B. | bc(b+c)>8 | C. | 6≤abc≤12 | D. | 12≤abc≤24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ${C}_{4}^{3}$•${C}_{4}^{4}$ | B. | ${C}_{8}^{3}$-${C}_{4}^{3}$ | C. | 2${C}_{4}^{1}$•${C}_{4}^{2}$+${C}_{4}^{3}$ | D. | ${C}_{8}^{3}$-${C}_{4}^{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9$\sqrt{3}$ | B. | 9$\sqrt{5}$ | C. | 6$\sqrt{3}$ | D. | 6$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com