11.已知函數(shù)y=f(-|x|)的圖象如左圖所示,則函數(shù)y=f(x)的圖象不可能是( 。
A.(1)B.(2)C.(3)D.(4)

分析 根據(jù)絕對值的幾何意義,可知函數(shù)y=f(-|x|),當(dāng)x<0時(shí),就是函數(shù)y=f(x),由此可得結(jié)論.

解答 解:當(dāng)x<0時(shí),y=f(-|x|)=f(x),
∴函數(shù)y=f(|x|)的圖象在y軸左邊的部分,就是函數(shù)y=f(x)的圖象,
故可得函數(shù)y=f(x)的圖象不可能是:③.
故選:C

點(diǎn)評 本題考查函數(shù)的圖象,考查絕對值的幾何意義,考查學(xué)生分析解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.曲線C的方程為$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=2,若直線l:y=kx+1-2k的曲線C有公共點(diǎn),則k的取值范圍是( 。
A.[$\frac{1}{3}$,1]B.($\frac{1}{3}$,1)C.(-∞,$\frac{1}{3}$]∪[1,+∞)D.(-∞,$\frac{1}{3}$)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f″(x)是f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)研究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.若f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,根據(jù)這一發(fā)現(xiàn),可求得f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+…+f($\frac{2015}{2016}$)=2015.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.函數(shù)f(x)=lnx+$\frac{1}{x}$+ax(a∈R)
(1)a=0時(shí),求f(x)最小值;
(2)若f(x)在[2,+∞)是單調(diào)減函數(shù),求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{3-2x-{x}^{2}}$的定義域?yàn)閇-3,1],值域?yàn)閇0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列推理正確的是( 。
A.把a(bǔ)(b+c)與 loga(x+y)類比,則有:loga(x+y)=logax+logay
B.把a(bǔ)(b+c)與 sin(x+y)類比,則有:sin(x+y)=sinx+siny
C.把(ab)n與 (a+b)n類比,則有:(x+y)n=xn+yn
D.把(a+b)+c與 (xy)z類比,則有:(xy)z=x(yz)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=sin(ωx+θ)的圖象(部分)如圖所示,則ω和θ的取值是(  )
A.$ω=1,θ=\frac{π}{3}$B.$ω=1,θ=-\frac{π}{3}$C.$ω=\frac{1}{2},θ=\frac{π}{6}$D.$ω=\frac{1}{2},θ=-\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下列命題:①函數(shù)$y=sin(\frac{3}{2}π+x)$是偶函數(shù)②x=$\frac{π}{8}$是函數(shù)$y=sin(2x+\frac{5}{4}π)$的一條對稱軸方程③函數(shù)$y=tan(2x+\frac{π}{6})$的圖象關(guān)于點(diǎn)$(\frac{π}{12},0)$對稱.其中正確命題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.①若正實(shí)數(shù)a,b,c滿足a+2b+3c=8,求$\frac{1}{a}$+$\frac{2}$+$\frac{3}{c}$的最小值.
②若a,b,c均為正實(shí)數(shù),求證:a+$\frac{1}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$的值至少有一個(gè)不小于2.

查看答案和解析>>

同步練習(xí)冊答案