若將函數(shù)y=sin2x的圖象向右平移φ(φ>0)個單位,得到的圖象關于直線x=
π
6
對稱,則φ的最小值為
 
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質
分析:根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可得所得函數(shù)的解析式為y=sin2(x-φ),再由題意結合正弦函數(shù)的對稱性可得2×
π
6
-2φ=kπ+
π
2
,k∈z,由此求得φ的最小值.
解答: 解:將函數(shù)y=sin2x的圖象向右平移φ(φ>0)個單位,可得函數(shù)y=sin2(x-φ)的圖象,
再根據(jù)得到的圖象關于直線x=
π
6
對稱,可得2×
π
6
-2φ=kπ+
π
2
,k∈z,
π
6
-φ=
2
+
π
4
,k∈z,即 φ=-
2
-
π
12
,k∈z,
再根據(jù)φ>0,可得φ的最小值為
12
,
故答案為:
12
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的對稱性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax-2-lnx(a∈R).
(Ⅰ)若f(x)在點(e,f(e))處的切線為x-ey-2e=0,求a的值;
(Ⅱ)求f(x)的單調區(qū)間;
(Ⅲ)當x>0時,求證:f(x)-ax+ex>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1的各頂點都在同一球面上,若四面體A-B1CD1的表面積為8
3
,則球的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線y=
x2
4
-3lnx的一條切線的斜率為
1
2
,則切線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義兩個實數(shù)間的一種新運算“*”:x*y=lg(10x+10y),x,y∈R 當x*x=y時,記x=*
y
對于任意實數(shù)a,b,c,給出如下結論:
①(a*b)*c=a*(b*c);  
②(a*b)+c=(a+c)*(b+c);
③a*b=b*a;
④*
a*b
a+b
2

其中正確的結論是
 
.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(x-
1
x
)6
的展開式的中間一項是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{cn},如果存在各項均為正整數(shù)的等差數(shù)列{an}和各項均為正整數(shù)的等比數(shù)列{bn},使得cn=an+bn,則稱數(shù)列{cn}為“DQ數(shù)列”.已知數(shù)列{en}是“DQ數(shù)列”,其前5項分別是:3,6,11,20,37,則en=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)的導函數(shù)f′(x)=1-cosx,x∈(-1,1).滿足f(1-x2)+f(1-x)<0,則實數(shù)x的取值范圍是( 。
A、(0,1)
B、(1,
2
C、(-2,-
2
D、(-
2
,1)∪(1,
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足0<x≤2,0<y≤2,且使關于t的方程t2+2xt+y=0與t2+2yt+x=0均有實數(shù)根,則2x+y有(  )
A、最小值2
B、最小值3
C、最大值2+2
2
D、最大值4+
2

查看答案和解析>>

同步練習冊答案