△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(3,7),B(5,-1),C(-2,-5),則AB邊中線所在的直線方程是
 
考點(diǎn):直線的兩點(diǎn)式方程
專題:直線與圓
分析:由題意可得AB的中點(diǎn)為D(4,3),可得CD的斜率,進(jìn)而可得點(diǎn)斜式方程,化為一般式即可.
解答: 解:∵A(3,7),B(5,-1),C(-2,-5),
由中點(diǎn)坐標(biāo)公式可得AB的中點(diǎn)為D(4,3),
∴CD的斜率k=
-5-3
-2-4
=
4
3
,
∴AB邊中線CD的方程為y-3=
4
3
(x-4),
化為一般式可得4x-3y-7=0
故答案為:4x-3y-7=0
點(diǎn)評(píng):本題考查直線的方程,涉及斜率公式和點(diǎn)斜式方程,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f′(x0)=-3,則
lim
h→0
f(x0+h)-f(x0-h)
h
=( 。
A、-3B、-6C、-9D、-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,sinA:sinB:sinC=1:1:
3
,則此三角形的最大內(nèi)角的度數(shù)是( 。
A、60°B、90°
C、120°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,已知前三項(xiàng)和為15,最后三項(xiàng)和為78,所有項(xiàng)和為155,則項(xiàng)數(shù)n=( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={0,1,2,3}且∁UA={0,2},則集合A的真子集共有( 。
A、3個(gè)B、4個(gè)C、5個(gè)D、6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下面程序框圖,當(dāng)輸入5時(shí),屏幕輸出的依次是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

全集U={0,1,3,5,6,8},集合A={ 1,5,8 },則集合∁UA=( 。
A、{0,2,3,6}
B、{ 0,3,6}
C、{1,5,8}
D、1+2log52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)在R上為減函數(shù),且f(2m)>f(-m+9),則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,3)
B、(0,+∞)
C、(3,+∞)
D、(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=mx-alnx-m,g(x)=
ex
ex
,其中m,a均為實(shí)數(shù).
(1)求g(x)的極值.
(2)設(shè)a=-1,若函數(shù)h(x)=f(x)+xex+1•g(x)-m2lnx是增函數(shù),求m的取值范圍.
(3)設(shè)a=2,若對(duì)任意給定的x0∈(0,e],在區(qū)間(0,e]上總存在t1,t2(t1≠t2),使得f(t1)=f(t2)=g(xm),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案