函數(shù)y=f(x)在R上為減函數(shù),且f(2m)>f(-m+9),則實(shí)數(shù)m的取值范圍是(  )
A、(-∞,3)
B、(0,+∞)
C、(3,+∞)
D、(-∞,-3)∪(3,+∞)
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件利用函數(shù)的單調(diào)性的性質(zhì)可得 2m<-m+9,由此解得m的范圍.
解答: 解:∵函數(shù)y=f(x)在R上是減函數(shù),且f(2m)>f(-m+9),
則有 2m<-m+9,解得m<3,
實(shí)數(shù)m的取值范圍是:(-∞,3).
故選:A.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓方程為
y2
a2
+
x2
b2
=1(a>b>0),F(xiàn)1、F2分別為其上、下兩個(gè)焦點(diǎn),F(xiàn)1(0,1),F(xiàn)2(0,-1),過(guò)F2斜率為1的直線與橢圓交于A、B兩點(diǎn),且|AB|=
24
7

(1)求橢圓的方程;
(2)C、D為橢圓的上、下頂點(diǎn),是否存在直線y=m,使得該直線上的任意點(diǎn)P(x0,m)滿足PC、PD與橢圓的另一交點(diǎn)M、N,MN的連線恒過(guò)F2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(3,7),B(5,-1),C(-2,-5),則AB邊中線所在的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)點(diǎn)(-2,a),N(a,4)的直線的斜率等于1,則a的值為( 。
A、1B、4C、1或3D、1或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式
x2+2x-3
x2+x+1
<0
的解集為( 。
A、-3<x<1
B、x>1或x<-3
C、x>-3
D、無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|-2<x<3},N={x|x≥-1},則M∩N等于( 。
A、(-2,-1]
B、(-2,1]
C、[-1,3)
D、[1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Tn為數(shù)列{an}:2,3,5,7,11,…的前n項(xiàng)積,可以發(fā)現(xiàn)T1+1,T2+1,T3+1等都是質(zhì)數(shù),用反證法證明:正質(zhì)數(shù)有無(wú)限個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x-1﹚=x2,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)0<x<4時(shí),y=x(8-2x)的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案