【題目】如圖,已知四棱錐P-ABCD的底面是邊長為2的菱形,∠BCD=60°,點E是BC邊
的中點,AC,DE交于點O,,且PO⊥平面ABCD.
(1)求證:PD⊥BC;
(2)在線段AP上找一點F,使得BF∥平面PDE,并求此時四面體PDEF的體積.
【答案】(1)證明見解析.
(2) VP-BDE=1.
【解析】
(1)先證明BC⊥平面PDE,即證PD⊥BC.(2)取AP中點為F,再取PD中點為G,連結FG,再證明FG⊥平面PDE,最后求四面體PDEF的體積.
(1)由題可得△BCD為正三角形,E為BC中點,故DE⊥BC.
又PO⊥平面ABCD,BC平面ABCD,則PO⊥BC,
而DE∩PO=O,平面,
所以BC⊥平面PDE.
又PD平面PDE,故PD⊥BC.
(2)取AP中點為F,再取PD中點為G,連結FG.
則FG為△PAD中位線,故FG AD,
又BE AD,所以FGBE,于是四邊形BFGE為平行四邊形,
因此BF∥EG.又BF平面PDE,EG平面PDE,
所以BF∥平面PDE.
由(1)知,BC⊥平面PDE.則有BC⊥PE,BC⊥DE,
而BC∥FG,故FG⊥PE,FG⊥DE,且DE∩PE=E,
所以FG⊥平面PDE.
于是四面體PDEF的體積為V=S△PDE·FG=××2××1=1.
科目:高中數學 來源: 題型:
【題目】已知橢圓E:,若橢圓上一點與其中心及長軸一個端點構成等腰直角三角形.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)如圖,若直線l與橢圓相交于AB且AB是圓的一條直徑,求橢圓E的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前項和為,且,().
(1)計算,,,,并求數列的通項公式;
(2)若數列滿足,求證:數列是等比數列;
(3)由數列的項組成一個新數列:,,,,,設為數列的前項和,試求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙二人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)完游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
(1)設分別表示甲、乙抽到的牌的數字,寫出甲乙二人抽到的牌的所有情況;
(2)若甲抽到紅桃3,則乙抽出的牌的牌面數字比3大的概率是多少?
(3)甲乙約定:若甲抽到的牌的牌面數字比乙大,則甲勝,反之,則乙勝,你認為此游戲是否公平,說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為建設美麗鄉(xiāng)村,政府欲將一塊長12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內有一景觀湖EFG(圖中陰影部分).以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標系xOy(如圖所示).景觀湖的邊界曲線符合函數模型.園區(qū)服務中心P在x軸正半軸上,PO=百米.
(1)若在點O和景觀湖邊界曲線上一點M之間修建一條休閑長廊OM,求OM的最短長度;
(2)若在線段DE上設置一園區(qū)出口Q,試確定Q的位置,使通道直線段PQ最短.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人玩一種游戲,每次由甲、乙各出1到5根手指,若和為偶數算甲贏,否則算乙贏.
(1)若以表示和為6的事件,求;
(2)現連玩三次,若以表示甲至少贏一次的事件,表示乙至少贏兩次的事件,試問與是否為互斥事件?為什么?
(3)這種游戲規(guī)則公平嗎?試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有120粒試驗種子需要播種,現有兩種方案:方案一:將120粒種子分種在40個坑內,每坑3粒;方案二:120粒種子分種在60個坑內,每坑2粒 如果每粒種子發(fā)芽的概率為0.5,并且,若一個坑內至少有1粒種子發(fā)芽,則這個坑不需要補種;若一個坑內的種子都沒發(fā)芽,則這個坑需要補種(每個坑至多補種一次,且第二次補種的種子顆粒同第一次).假定每個坑第一次播種需要2元,補種1個坑需1元;每個成活的坑可收貨100粒試驗種子,每粒試驗種子收益1元.
(1)用表示播種費用,分別求出兩種方案的的數學期望;
(2)用表示收益,分別求出兩種方案的收益的數學期望;
(3)如果在某塊試驗田對該種子進行試驗,你認為應該選擇哪種方案?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com