16.設(shè)集合S={x|x>1},T={x||x-1|≤2},則(∁RS)∪T( 。
A.(-∞,3]B.[-1,1]C.[-1,3]D.[-1,+∞)

分析 求出S的補(bǔ)集,解出集合T,取并集即可.

解答 解:集合S={x|x>1},${∁}_{R}^{S}$={x|x≤1},
T={x||x-1|≤2}={x|-1≤x≤3},
則(∁RS)∪T=(-∞,3],
故選:A.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算,熟練掌握運(yùn)算性質(zhì)是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知⊙O:x2+y2=4和⊙C:x2+y2-12x+27=0.
(1)判斷⊙O和⊙C的位置關(guān)系;
(2)過(guò)⊙C的圓心C作⊙O的切線l,求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求函數(shù)f(x)=x4-x3的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.($\frac{1}{4}$)-0.5+8${\;}^{\frac{2}{3}}$=6,lg2+lg5-($\frac{π}{23}$)0=0,10lg2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)X是離散型隨機(jī)變量,其分布列為其中a≠0,b≠0,則$\frac{1}{a}$+$\frac{1}$的最小值為8
 X 0 1 2
 P a b $\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)橢圓上的點(diǎn)P作y軸的垂線,垂足為Q,若四邊形F1F2PQ為菱形,則該橢圓的離心率為( 。
A.$\frac{{\sqrt{2}-1}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{a}x,x>2}\end{array}\right.$(a>0且a≠1)的值域是[4,+∞),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.[$\frac{1}{2}$,1)C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.點(diǎn)B,F(xiàn)分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)與左焦點(diǎn),過(guò)F作x軸的垂線與橢圓交于第二象限的一點(diǎn)P,H($\frac{{a}^{2}}{c}$,0)(c為半焦距),若OP∥BH(O為坐標(biāo)原點(diǎn)),則橢圓的離心率為( 。
A.$\frac{\sqrt{5}-1}{2}$B.$\sqrt{\frac{\sqrt{5}-1}{2}}$C.$\frac{\sqrt{2}}{2}$D.$\frac{{\;}^{3}\sqrt{4}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.給出下列命題:
①雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1與橢圓$\frac{{x}^{2}}{35}$+y2=1有相同的焦點(diǎn);
②過(guò)點(diǎn)P(2,1)的拋物線的標(biāo)準(zhǔn)方程是y2=$\frac{1}{2}$x;
③已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,若它的離心率為$\sqrt{5}$,則雙曲線C的一條漸近線方程為y=2x;
④橢圓$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{m}$=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P為橢圓上的動(dòng)點(diǎn),△PF1F2的面積的最大值為2,則m的值為2.
其中真命題的序號(hào)為①③.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案