14.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=ex+x2+1,則函數(shù)h(x)=2f(x)-g(x)在點(0,h(0))處的切線方程是x-y+4=0.

分析 由題意可得f(-x)=f(x),g(-x)=-g(x),將已知條件中的方程的x換為-x,解方程可得f(x),g(x)的解析式,求得h(x)的解析式和導(dǎo)數(shù),可得切線的斜率和切點,運用點斜式方程可得所求切線的方程.

解答 解:f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),
可得f(-x)=f(x),g(-x)=-g(x),
由f(x)-g(x)=ex+x2+1,
可得f(-x)-g(-x)=e-x+x2+1,
即為f(x)+g(x)=e-x+x2+1,
解得$f(x)=\frac{{{e^x}+{e^{-x}}+2{x^2}+2}}{2}$,$g(x)=\frac{{{e^{-x}}-{e^x}}}{2}$,
即有h(x)=2f(x)-g(x)=${e^x}+{e^{-x}}+2{x^2}+2-\frac{{{e^{-x}}-{e^x}}}{2}$
=$\frac{3}{2}{e^x}+\frac{1}{2}{e^{-x}}+2{x^2}+2$,
可得導(dǎo)數(shù)為$h'(x)=\frac{3}{2}{e^x}+\frac{1}{2}{e^{-x}}•(-1)+4x$,
即有在點(0,h(0))處的切線斜率為$h'(0)=\frac{3}{2}-\frac{1}{2}=1$,
切點為(0,4),
則所求切線方程是x-y+4=0.
故答案為:x-y+4=0.

點評 本題主要考查導(dǎo)數(shù)的運用:求切線的方程,注意運用導(dǎo)數(shù)的幾何意義,同時考查函數(shù)的解析式的求法,注意運用奇偶函數(shù)的定義,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{OA}$=(4,2),$\overrightarrow{OB}$=(-4,y),并且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,則$\overrightarrow{AB}$的長度為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某幾何體的正(主)視圖和俯視圖如圖所示,則該幾何體的體積的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=(ax2+bx+a-b)ex-$\frac{1}{2}$(x-1)(x2+2x+2),a∈R,且曲線y=f(x)與x軸切于原點O.
(1)求實數(shù)a,b的值;
(2)若f(x)•(x2+mx-n)≥0恒成立,求m+n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.曲線f(x)=2x2-3x在點(1,f(1))處的切線方程為x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,圓內(nèi)接四邊形ABCD中,AB=2,BC=4,∠ABC=60° 頂點D在劣弧$\widehat{AC}$上運動,則三角形ACD面積的最大值等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實數(shù)x,y滿足xy-3=x+y,且x>1,則y(x+8)的最小值是( 。
A.33B.26C.25D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四邊形ABCD中,AB=4,AC=2$\sqrt{3}$,cos∠ACB=$\frac{1}{3}$,∠D=2∠B.
(Ⅰ)求sin∠B;
(Ⅱ)若AB=4AD,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為M,第二象限的點P,Q在雙曲線的某條漸近線上,且$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,若△MPQ為等邊三角形,則下列結(jié)論正確的有①②(寫出所有正確結(jié)論的序號)
①雙曲線的漸近線方程為y=±$\frac{\sqrt{3}}{2}$x;
②雙曲線的離心率為$\frac{\sqrt{7}}{2}$;
③雙曲線的頂點為(±2,0);
④雙曲線的焦點為(±3,0)

查看答案和解析>>

同步練習(xí)冊答案