2.函數(shù)f(x)=$\frac{x}{{1+{x^2}}}$的極大值為$\frac{1}{2}$,此時(shí)x=1.

分析 求出原函數(shù)的導(dǎo)函數(shù),得到原函數(shù)的單調(diào)期間,進(jìn)一步求得極值.

解答 解:由f(x)=$\frac{x}{{1+{x^2}}}$,得f′(x)=$\frac{1+{x}^{2}-2{x}^{2}}{(1+{x}^{2})^{2}}=\frac{1-{x}^{2}}{(1+{x}^{2})^{2}}$,
當(dāng)x∈(-∞,-1)∪(1,+∞)時(shí),f′(x)<0,當(dāng)x∈(-1,1)時(shí),f′(x)>0,
∴f(x)在(-∞,-1),(1,+∞)上為減函數(shù),在(-1,1)上為增函數(shù),
∴當(dāng)x=1時(shí),f(x)有極大值為f(1)=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$,1.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)極值的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.定義域?yàn)镽的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)f'(x),且滿足f(x)>f'(x),f(0)=1,則不等式$\frac{f(x)}{e^x}<1$的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知等比數(shù)列{an}滿足a2+2a1=4,a32=a5,則該數(shù)列前20項(xiàng)的和為( 。
A.210B.210-1C.220-1D.220

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知直線l與雙曲線x2-y2=1交于A、B兩點(diǎn),若線段AB的中點(diǎn)為C(2,1),則直線l的斜率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=2x-1,則函數(shù)y=|f(x-1)|的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=\sqrt{2}cos(α+\frac{π}{4})\\ y=sin2α+1\end{array}\right.$(a為參數(shù));若以直角坐標(biāo)系中的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為;$ρ=\frac{m}{{2cos(θ+\frac{π}{6})+2sinθ}}$,(m為常數(shù))
(1)求曲線C1和曲線C2的直角坐標(biāo)方程;
(2)若曲線C1和曲線C2有公共點(diǎn),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={α|α=2kπ±$\frac{2π}{3}$,k∈Z},B={β|β=4kπ±$\frac{2π}{3}$,k∈Z},C={γ|γ=kπ±$\frac{2π}{3}$,k∈Z},則這三個(gè)集合之間的關(guān)系為( 。
A.A⊆B⊆CB.B⊆A⊆CC.C⊆A⊆BD.B⊆C⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知{an}滿足:${a_1}=a,{a_{n+1}}=\left\{\begin{array}{l}{a_n}-3({{a_n}>3,n∈{N^+}})\\ 4-{a_n}({{a_n}≤3,n∈{N^+}})\end{array}\right.$
(1)若$a=20\sqrt{2}$,求數(shù)列{an}的前30項(xiàng)和S30的值;
(2)求證:對(duì)任意的實(shí)數(shù)a,總存在正整數(shù)m,使得當(dāng)n>m(n∈N+)時(shí),an+4=an成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}+1$,則( 。
A.an=2n-1B.${a_n}=\left\{\begin{array}{l}2,n=1\\ 2n-1,n>1\end{array}\right.$
C.an=2n+1D.${a_n}=\left\{\begin{array}{l}2,n=1\\ 2n+1,n>1\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊(cè)答案