18.如圖所示,直線l與雙曲線$E:{x^2}-\frac{y^2}{4}=1$及其漸近線依次交于A、B、C、D四點(diǎn),記$\frac{{|{AB}|}}{{|{BD}|}}=λ,\frac{{|{AC}|}}{{|{CD}|}}=μ$.
(Ⅰ)若直線l的方程為y=x+2,求λ及μ;
(Ⅱ)請(qǐng)根據(jù)(Ⅰ)的計(jì)算結(jié)果猜想λ與μ的關(guān)系,并證明之.

分析 (Ⅰ)由相似三角形可得$\frac{{|{AB}|}}{{|{BD}|}}=λ=\frac{{{y_B}-{y_A}}}{{{y_D}-{y_B}}},\frac{{|{AC}|}}{{|{CD}|}}=μ=\frac{{{y_C}-{y_A}}}{{{y_D}-{y_C}}}$,直線y=x+2分別于雙曲線方程和漸近線方程聯(lián)立,可求得A,B,C,D四點(diǎn)的縱坐標(biāo),即可求得;
(Ⅱ)由(Ⅰ)的計(jì)算結(jié)果猜想λμ=1,證明:設(shè)A(x1,y1),D(x2,y2),根據(jù)相似三角形可解得${x_B}=\frac{{{x_1}+λ{(lán)x_2}}}{1+λ},{y_B}=\frac{{{y_1}+λ{(lán)y_2}}}{1+λ}$,同理可得${x_C}=\frac{{{x_1}+μ{x_2}}}{1+μ},{y_C}=\frac{{{y_1}+μ{y_2}}}{1+μ}$,又因?yàn)辄c(diǎn)B,C,在漸近線上,得出2x1+y1=-λ(2x2+y2),2x1-y1=-μ(2x2-y2),兩式相乘得即可得到.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}{y=x+2}\\{{x}^{2}-\frac{{y}^{2}}{4}=1}\end{array}\right.$,可得$\frac{3}{4}{y}^{2}-4y+3=0$,∴yA=$\frac{8-2\sqrt{7}}{3}$,yB=$\frac{8+2\sqrt{7}}{3}$
$\left\{\begin{array}{l}{y=x+2}\\{y=±2}\end{array}\right.$,∴yB=$\frac{4}{3}$,yC=4,
由相似三角形可得$\frac{{|{AB}|}}{{|{BD}|}}=λ=\frac{{{y_B}-{y_A}}}{{{y_D}-{y_B}}},\frac{{|{AC}|}}{{|{CD}|}}=μ=\frac{{{y_C}-{y_A}}}{{{y_D}-{y_C}}}$,
∴$λ=\frac{{2\sqrt{7}-4}}{{2\sqrt{7}+4}}$,$μ=\frac{{2\sqrt{7}+4}}{{2\sqrt{7}-4}}$;
(Ⅱ)由(Ⅰ)的計(jì)算結(jié)果猜想λμ=1,證明如下:
設(shè)A(x1,y1),D(x2,y2),則$\frac{{{x_B}-{x_1}}}{{{x_2}-{x_B}}}=\frac{{{y_B}-{y_1}}}{{{y_2}-{y_B}}}=λ$,
∴xB=$\frac{{x}_{1}+λ{(lán)x}_{2}}{1+λ}$,yB=$\frac{{y}_{1}+λ{(lán)y}_{2}}{1+λ}$
同理可得${x_C}=\frac{{{x_1}+μ{x_2}}}{1+μ},{y_C}=\frac{{{y_1}+μ{y_2}}}{1+μ}$
又yB=-2xB,yC=2xC
∴y1+λy2=-2(x1+λx2),y1+μy2=2(x1+μx2
即2x1+y1=-λ(2x2+y2),2x1-y1=-μ(2x2-y2
兩式相乘得4x12-y12=λμ(4x22-y22)  
即4=4λμ,∴λμ=1,猜想得證.

點(diǎn)評(píng) 本題考查雙曲線的方程,考查直線與雙曲線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.以下四個(gè)命題中,真命題的個(gè)數(shù)是 ( 。
①若a+b≥2,則a,b中至少有一個(gè)不小于1;
②$\overrightarrow{a}$•$\overrightarrow$=0是$\overrightarrow{a}$⊥$\overrightarrow$的充要條件;
③?x∈[0,+∞),x3+x≥0;
④函數(shù)y=f(x+1)是奇函數(shù),則y=f(x)的圖象關(guān)于(1,0)對(duì)稱.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,設(shè)a,b,c分別為角A,B,C的對(duì)邊,若a=5,A=$\frac{π}{4}$,cosB=$\frac{3}{5}$,則邊b=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=alnx+\frac{1}{x}+\frac{1}{{2{x^2}}},a∈R$.
(1)a=2時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)證明:$({x-1})({{e^{-x}}-x})+2lnx<\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行抽樣調(diào)查,調(diào)查結(jié)果如表所示
喜歡甜品不喜歡甜品總計(jì)
南方學(xué)生503080
北方學(xué)生101020
總計(jì)6040100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”
(2)已知在被調(diào)查的北方學(xué)生中有4人是數(shù)學(xué)系的學(xué)生,其中2人喜歡甜品,現(xiàn)在從這4名學(xué)生中隨機(jī)抽取2人,求恰有1人喜歡甜品的概率?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
下面的臨界表供參考:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若命題p的否命題為r,命題r的逆命題為s,p的逆命題為t,則s是t的(  )
A.逆否命題B.逆命題C.否命題D.原命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,a、b、c分別為A、B、C的對(duì)邊,若2b=a+c,B=30°,則△ABC的面積為$\frac{3}{2}$,則b的值1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點(diǎn)A(2,-3)關(guān)于直線y=-x+1的對(duì)稱點(diǎn)為( 。
A.(3,-2)B.(4,-1)C.(5,0)D.(3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.將數(shù)列{2n-1}按“第n組有n個(gè)數(shù)”的規(guī)則分組如下:(1),(3,5),(7,9,11),…,則第100組中的第三個(gè)數(shù)是9905.

查看答案和解析>>

同步練習(xí)冊(cè)答案