分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sinB的值,利用正弦定理即可求b的值.
解答 解:在△ABC中,∵cosB=$\frac{3}{5}$,B∈(0,π),
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
又∵a=5,A=$\frac{π}{4}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{5×\frac{4}{5}}{\frac{\sqrt{2}}{2}}$=4$\sqrt{2}$.
故答案為:4$\sqrt{2}$.
點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3{π^2}}}{8}-1$ | B. | $\frac{{3{π^2}}}{8}+1$ | C. | $\frac{{3{π^2}}}{4}-1$ | D. | $\frac{{3{π^2}}}{4}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com