過點(diǎn)P(2,0)作直線l與圓x2+y2=1交于A、B兩點(diǎn),則
PA
PB
等于定值
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:根據(jù)題意
PA
,
PB
在同一直線上且方向相同,則
PA
PB
=PA×PB;由于直線與圓相交,根據(jù)切割線定理得到切線長(zhǎng)2=PA×PB,即可得到結(jié)果.
解答: 解:由圓方程得,圓心O(0,0),半徑r=1,
∵|OP|=2,
∴當(dāng)過P(-2,0)直線l與圓相切時(shí),切線長(zhǎng)為
OP2-r2
=
22-12
=
3
,
則根據(jù)切割線定理得:|PA|•|PB|=(
3
2=3.
故答案為:3.
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,熟練掌握切割線定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0≤x≤2},B={y|1<y<3},則A∩B=( 。
A、[1,2)
B、[0,3)
C、(1,2]
D、[0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=2•3n-1,cn=an+(-1)nlnan.求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)是偶函數(shù),且x≥0時(shí),f(x)=ln(x2-2x+2).
(1)求f(x)的解析式;
(2)寫出f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(2x-x2)的值域是
 
,單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)A(-
3p
2
,p),且與拋物線y2=2px只有一個(gè)公共點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的圖象如圖,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,第n行共有n個(gè)數(shù),且該行的第一個(gè)數(shù)和最后一個(gè)數(shù)都是n,中間任意一個(gè)數(shù)都等于第n-1行與之相鄰的兩個(gè)數(shù)的和,an,1,an,2…an,n(n=1,2,…)分別表示第n行的第一個(gè)數(shù),第二個(gè)數(shù),…第n個(gè)數(shù),則an,2(n≥2且?∈N)的表達(dá)式( 。
A、an,2=
n2-n
2
B、an,2=
n2+n-2
2
C、an,2=
n2+n-4
2
D、an,2=
n2-n+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=k(x-
1
x
)-lnx,k∈R.
(Ⅰ)若f(x)與x軸相切于點(diǎn)(1,f(1),求f(1))的解析式;
(Ⅱ)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案