【題目】(1)求與雙曲線有相同的焦點且過點的雙曲線標準方程;

(2)求焦點在直線上的拋物線的標準方程.

【答案】(1) (2)

【解析】

(1)先求出雙曲線的c,再代點P的坐標即得a,b的方程組,解方程組即得雙曲線的標準方程.(2)

先根據(jù)焦點在直線x﹣2y+2=0上求得焦點的坐標,再分拋物線以x軸對稱式和y軸對稱式,

分別設出拋物線的標準方程,求得p,即可得到拋物線的方程.

由題得設雙曲線的標準方程為,

代點P的坐標得解方程組.

(2) ∵焦點在直線x﹣2y+2=0上,且拋物線的頂點在原點,對稱軸是坐標軸,

焦點的坐標為A(0, 1),或(-2,0),

若拋物線以y軸對稱式,設方程為x2=2py,=1,求得p=2,∴此拋物線方程為x2=4y;

若拋物線以x軸對稱式,設方程為y2=-2px,=2,求得p=4,∴此拋物線方程為y2=-8x;

故所求的拋物線的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點.

(1)求B點到平面PCD的距離;

(2)線段PD上是否存在一點Q,使得二面角Q-AC-D的余弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 ( t為參數(shù)).以原點為極點,x軸正半軸為極軸 建立極坐標系,圓C的方程為 ρ=2 sinθ.
(1)寫出直線l的普通方程和圓C的直角坐標方程;
(2)若點P的直角坐標為(1,0),圓C與直線l交于A,B兩點,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓學生更多的了解數(shù)學史知識,梁才學校高二年級舉辦了一次追尋先哲的足跡,傾聽數(shù)學的聲音的數(shù)學史知識競賽活動,共有800名學生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,統(tǒng)計結(jié)果見下表.請你根據(jù)頻率分布表解答下列問題:

序號

分組

組中值

頻數(shù)

頻率

i

(分數(shù))

Gi

(人數(shù))

Fi

1

65

0.12

2

75

20

3

85

0.24

4

95

合計

50

1

(1)填充頻率分布表中的空格;

(2)為鼓勵更多的學生了解數(shù)學史知識,成績不低于85分的同學能獲獎,請估計在

參加的800名學生中大概有多少名學生獲獎?(3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的S的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點恰好是拋物線y= x2的焦點,離心率等于
(1)求橢圓C的方程;
(2)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若 1 , ,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求與雙曲線有相同的焦點且過點的雙曲線標準方程;

(2)求焦點在直線上的拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax,其中e為自然對數(shù)的底數(shù),a為常數(shù).
(1)若對函數(shù)f(x)存在極小值,且極小值為0,求a的值;
(2)若對任意x∈[0, ],不等式f(x)≥ex(1﹣sinx)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點.

1)求證: 平面平面;

2)求證: 平面

3)求三棱錐體積.

查看答案和解析>>

同步練習冊答案