2.若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17,則f(14)=17;記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2016(8)=8.

分析 通過計算f1(8)、f2(8)和f3(8),得到fn+3(8)=fn(8)對任意n∈N*成立,由此可得f2016(8)=f3(8)=8,得到本題答案.

解答 解:根據(jù)題意,可得
f1(8)=f(8)=64+1=656+5=11,
f2(8)=f[f1(8)]=f(11)=121+1=122=1+2+2=5,
f3(8)=f[f2(8)]=f(5)=25+1=26=8,
f4(8)=f[f3(8)]=f(8)=11,

因此,可得fn+3(8)=fn(8)對任意n∈N*成立,
∴f2016(8)=f3(8)=8.
故答案為:8.

點評 本題給出“f(n)為n2+1(n∈N*)的各位數(shù)字之和”的模型,求f2016(8)的值,著重考查了函數(shù)的對應(yīng)法則、數(shù)列的周期和進行簡單的合情推理等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知平面M內(nèi)有4個點,平面N內(nèi)有5個點,問這九個點最多能確定(1)多少個平面?(2)多少個四面體?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f′(x)是定義在R上的函數(shù)f(x)的導(dǎo)數(shù),滿足f′(x)+2f(x)>0,且f(-1)=0,則f(x)<0的解集為( 。
A.(-∞,-1)B.(-1,1)C.(-∞,0)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)實數(shù)a∈(1,2),關(guān)于x的一元二次不等式x2-(a2+3a+2)x+3a(a2+2)<0的解為( 。
A.(3a,a2+2)B.(a2+2,3a)C.(3,4)D.(3,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知c=acosB,b=asinC,判斷三角形形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=|x-3|+2,g(x)=kx,若方程f(x)=g(x)有兩個不相等實根,則實數(shù)k的范圍( 。
A.(0,$\frac{2}{3}$)B.($\frac{2}{3}$,1)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知左、右焦點分別是F1,F(xiàn)2的雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$上一點A滿足AF1⊥AF2,且|AF1|=3|AF2|,則該雙曲線的漸近線方程為( 。
A.y=±$\frac{\sqrt{10}}{2}$xB.y=±$\frac{\sqrt{6}}{2}$xC.y=±$\sqrt{6}$xD.y=±$\sqrt{10}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l:x+3y-2b=0過雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$的右焦點F,則雙曲線的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,則a0+a2+…+a2n的值是( 。
A.$\frac{1}{2}$(3n-1)B.$\frac{1}{2}$(3n+1)C.3nD.3n+1

查看答案和解析>>

同步練習(xí)冊答案