【題目】一個棱柱是正四棱柱的充要條件是( )
A.底面是正方形,有兩個側面是矩形B.底面是正方形,有兩個側面垂直底面
C.底面是正方形,相鄰兩個側面是矩形D.每個側面都是全等的矩形
科目:高中數學 來源: 題型:
【題目】下列四個命題:
①若,,則
②函數,的最小值是3
③用長為的鐵絲圍成--個平行四邊形,則該平行四邊形能夠被直徑為的圓形紙片完全覆蓋
④已知正實數,滿足,則的最小值為.
其中所有正確命題的序號是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的離心率為,短軸長為.
求橢圓C的標準方程;
過橢圓C的左焦點F的直線l與橢圓C交于M,N兩點,證明:原點O不在以MN為直徑的圓上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:,點,.
(1)若線段的中垂線與圓相切,求實數的值;
(2)過直線上的點引圓的兩條切線,切點為,若,則稱點為“好點”. 若直線上有且只有兩個“好點”,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某人打算做一個正四棱錐形的金字塔模型,先用木料搭邊框,再用其他材料填充,已知金字塔的每一條棱和邊都相等.
(1)求證:直線AC垂直于直線SD;
(2)若搭邊框共使用木料24米,則需要多少立方米的填充材料才能將整個金字塔內部填滿?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主須為機動車購買的險種.若普通座以下私家車投保交強險第一年的費用(基本保費)是元,在下一年續(xù)保時,實行費率浮動制,其保費與上一年度車輛發(fā)生道路交通事故情況相聯系,具體浮動情況如下表:
類型 | 浮動因素 | 浮動比率 |
上一年度未發(fā)生有責任的道路交通事故 | 下浮 | |
上兩年度未發(fā)生有責任的道路交通事故 | 下浮 | |
上三年度未發(fā)生有責任的道路交通事故 | 下浮 | |
上一年度發(fā)生一次有責任不涉及死亡的道路交通事故 | ||
上一年度發(fā)生兩次及以上有責任不涉及死亡的道路交通事故 | 上浮 | |
上三年度發(fā)生有責任涉及死亡的道路交通事故 | 上浮 |
據統(tǒng)計,某地使用某一品牌座以下的車大約有輛,隨機抽取了輛車齡滿三年的該品牌同型號私家車的下一年續(xù)保情況,統(tǒng)計得到如下表格:
類型 | ||||||
數量 |
|
|
|
|
|
|
以這輛該品牌汽車的投保類型的頻率視為概率,按照我國《機動車交通事故責任保險條例》汽車交強險價格為元.
(1)求得知,并估計該地本年度使用這一品牌座以下汽車交強險費大于元的輛數;
(2)試估計該地使用該品牌汽車的一續(xù)保人本年度的保費不超過元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主須為機動車購買的險種.若普通座以下私家車投保交強險第一年的費用(基本保費)是元,在下一年續(xù)保時,實行費率浮動制,其保費與上一年度車輛發(fā)生道路交通事故情況相聯系,具體浮動情況如下表:
類型 | 浮動因素 | 浮動比率 |
上一年度未發(fā)生有責任的道路交通事故 | 下浮 | |
上兩年度未發(fā)生有責任的道路交通事故 | 下浮 | |
上三年度未發(fā)生有責任的道路交通事故 | 下浮 | |
上一年度發(fā)生一次有責任不涉及死亡的道路交通事故 | ||
上一年度發(fā)生兩次及以上有責任不涉及死亡的道路交通事故 | 上浮 | |
上三年度發(fā)生有責任涉及死亡的道路交通事故 | 上浮 |
某一機構為了研究某一品牌座以下投保情況,隨機抽取了輛車齡滿三年的該品牌同型號私家車的下一年續(xù)保情況,統(tǒng)計得到如下表格:
類型 | ||||||
數量 |
|
|
|
|
|
|
以這輛該品牌汽車的投保類型的頻率視為概率.
(I)試估計該地使用該品牌汽車的一續(xù)保人本年度的保費不超過元的概率;
(II)記為某家庭的一輛該品牌車在第四年續(xù)保時的費用,求的分布列和期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com