已知實(shí)數(shù)x>0,則下列不等式中不能恒成立的一個是( 。
A、lnx+1<x<ex-1
B、sinx-x<0
C、ex
1
2
x2+x+1
D、2x-x2≥0
考點(diǎn):不等式比較大小
專題:不等式的解法及應(yīng)用
分析:對于D:由2x=x2,x>0,解得x=2或4.當(dāng)0<x<2時(shí),2x>x2;當(dāng)2<x<4時(shí),x2>2x;…,即可得出.
解答: 解:對于D:由2x=x2,x>0,解得x=2或4.
∴當(dāng)0<x<2時(shí),2x>x2;
當(dāng)2<x<4時(shí),x2>2x;
當(dāng)4<x時(shí),2x>x2;
當(dāng)x=2或4時(shí),2x=x2
因此D不能恒成立.
故選:D.
點(diǎn)評:本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+an+1=
(-1)n+1
2
(n∈N*)
,其中a1=-
1
2
,試通過計(jì)算a2,a3,a4,a5,猜想an等于(  )
A、an=
n
2
B、an=-
n
2
C、an=
n
2
(n為奇數(shù))
-
n
2
(n為偶數(shù))
D、
-
n
2
(n為奇數(shù))
n
2
(n為偶數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點(diǎn)P(t,t),Q(10-t,0),其中0<t<10,則點(diǎn)M(6,1),N(4,5)與直線PQ的關(guān)系是( 。
A、M,N均在直線PQ上
B、M,N均不在直線PQ上
C、M不在直線PQ上,N可能在直線PQ上
D、M可能在直線PQ上,N不在直線PQ上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,{bn}為正項(xiàng)等比數(shù)列,公比q≠1,若a1=b1,a15=b15,則( 。
A、a8≥b8
B、a8>b8
C、a8≤b8
D、a8<b8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x≥1
x+y≤3
2x-y≤2
,則目標(biāo)函數(shù)z=x+2y的最大值為( 。
A、1
B、
13
3
C、4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實(shí)數(shù)x,“x>6”是“x>10”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,x),
b
=(1,x),若2
b
-
a
a
垂直,則|a|=( 。
A、1
B、
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義一種新運(yùn)算:a?b=
b,a≥b
a,a<b
,已知函數(shù)f(x)=(1+
2
x
)?3log2(x+1),若方程f(x)-k=0恰有兩個不相等的實(shí)根,則實(shí)數(shù)k的取值范圍為(  )
A、(-∞,3)
B、(1,3)
C、(-∞,-3)∪(1,3)
D、(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長是2,點(diǎn)E、F分別是兩條棱的中點(diǎn)
(1)證明:四邊形EFBD是一個梯形;
(2)求三棱臺CBD-C1FE的體積.

查看答案和解析>>

同步練習(xí)冊答案