分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)利用“錯(cuò)位相減法”與等比數(shù)列求和公式即可得出.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a3=3,a6+a8=14.
∴$\left\{\begin{array}{l}{{a}_{1}+2d=3}\\{2{a}_{1}+12d=14}\end{array}\right.$,解得a1=d=1.
∴an=n.
(2)2nan=n•2n.
∴數(shù)列{2nan}的前n項(xiàng)和Sn=2+2×22+3×23+…+n•2n,
2Sn=22+2×23+…+(n-1)•2n+n•2n+1,
∴-Sn=2+22+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1,
∴${S_n}=(n-1)×{2^{n+1}}+2$.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a51=51 | B. | a2+a100<0 | C. | a1+a101>0 | D. | a3+a99=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè),.
(1)求在上的值域;
(2)若對(duì)于任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
下列命題的說(shuō)法錯(cuò)誤的是( )
A.命題“若 則 ”的逆否命題為:“若, 則”.
B.“”是“”的充分不必要條件.
C.對(duì)于命題 則
D.若為假命題,則均為假命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=x+\frac{4}{x}$ | B. | $y=lg(x+1)+\frac{1}{lg(x+1)}$ | ||
C. | $y=\sqrt{{x^2}+1}+\frac{1}{{\sqrt{{x^2}+1}}}$ | D. | $y=sinx+\frac{1}{sinx},({0<x<\frac{π}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com