15.已知等比數(shù)列{an}的公比為正數(shù),且a3a9=2a${\;}_{5}^{2}$,a2=2,則q=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{3}}{2}$

分析 利用等比數(shù)列的性質(zhì)即可得出.

解答 解:∵a3a9=2a${\;}_{5}^{2}$,∴${a}_{6}^{2}=2{a}_{5}^{2}$,即q2=2,q>0,解得q=$\sqrt{2}$.
故選:C.

點評 本題考查了等比數(shù)列的性質(zhì),考查了推理能力與計算能力,屬于中檔題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.以下說法正確的有①③
①若f(x+2)=f(x-2),x∈R,則函數(shù)y=f(x)是周期函數(shù);
②若f(x+2)=-f(x),x∈R,則函數(shù)y=f(x)不一定是周期函數(shù);
③若f(x+2)=-f(x),x∈R,且f(x)是奇函數(shù),則直線x=5是函數(shù)y=f(x)的一條對稱軸;
④若f(x+2)=2f(x),x∈R,且x∈[-1,1]時,$f(x)=cos\frac{πx}{2}$,函數(shù)$g(x)=\left\{\begin{array}{l}{e^x},\;\;\;x≤0\\ lnx,x>0\end{array}\right.$,則函數(shù)y=f(x)-g(x)在區(qū)間[-3,3]上有4個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x-[x]\;\;\;\;\;\;\;x≥0}\\{f(x+1)\;\;\;\;\;x<0}\end{array}\right.$其中[x]表示不超過x的最大整數(shù),如[-1.3]=-2,[1.3]=1,則函數(shù)y=f(x)-$\frac{1}{6}$x-$\frac{1}{6}$不同零點的個數(shù)( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x+2y≥3}\\{2x+y≤3}\end{array}\right.$,則y-x的取值范圍為[0,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.隨機詢問某大學40名不同性別的大學生在購買食物時是否讀營養(yǎng)說明,得到如下2×2列聯(lián)表:
讀營養(yǎng)說明不讀營養(yǎng)說明合計
16420
81220
合計241640
(1)根據(jù)以上列聯(lián)表進行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為“性別與是否讀營養(yǎng)說明之間有關(guān)系”?
(2)若采用分層抽樣的方法從讀營養(yǎng)說明的學生中隨機抽取3人,則男生和女生抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從中隨機抽取2人,求恰有一男一女的概率.(n=a+b+c+d)參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.直線x+2y+3=0將圓(x-a)2+(y+5)2=3平分,則a=( 。
A.13B.7C.-13D.-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.(x-y)9的展開式中,系數(shù)最大項的系數(shù)是( 。
A.84B.126C.210D.252

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖是一個算法流程圖,則輸出的x的值是( 。
A.59B.33C.13D.151

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)滿足:①對任意x∈(0,+∞),恒有f(2x)=2f(x)成立;②當x∈(1,2]時,f(x)=2-x.若f(a)=f(2020),則滿足條件的最小的正實數(shù)a的值為(  )
A.28B.34C.36D.100

查看答案和解析>>

同步練習冊答案