分析 (1)先判斷定義域是否對稱,再判斷f(-x)與f(x)的關(guān)系,
(2)令f(-x)=-f(x)恒成立解出a.
解答 解;(1)由函數(shù)有意義得ax-1≠0,∴x≠0,關(guān)于原點對稱.
令f(x)=$\frac{{a}^{x}+1}{{a}^{x}-1}$,則f(-x)=$\frac{{a}^{-x}+1}{{a}^{-x}-1}$=$\frac{1+{a}^{x}}{1-{a}^{x}}$=-f(x),
∴函數(shù)y=$\frac{{a}^{x}+1}{{a}^{x}-1}$是奇函數(shù).
(2)若f(x)=a-$\frac{2}{{2}^{x}+1}$是奇函數(shù),則f(-x)=-f(x)恒成立.
∴a-$\frac{2}{{2}^{-x}+1}$=-a+$\frac{2}{{2}^{x}+1}$,即2a=$\frac{2}{{2}^{x}+1}$+$\frac{2•{2}^{x}}{1+{2}^{x}}$=$\frac{2(1+{2}^{x})}{1+{2}^{x}}$=2,
∴a=1.
點評 本題考查了函數(shù)奇偶性的性質(zhì)及判斷,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(g(x)) | B. | g(f(x)) | C. | f(f(x)) | D. | g(g(x)) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,π] | B. | [$\frac{π}{2}$,$\frac{3π}{2}$] | C. | [$\frac{π}{2}$,π] | D. | [$\frac{3π}{2}$,2π] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2010}{2011}$ | B. | $\frac{2014}{2015}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{2017}{2018}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com