18.若復(fù)數(shù)z=$\frac{1-2i}{3-i}$(i為虛數(shù)單位),則z的模為$\frac{\sqrt{2}}{2}$.

分析 直接利用復(fù)數(shù)的模運(yùn)算法則化簡求解即可.

解答 解:復(fù)數(shù)z=$\frac{1-2i}{3-i}$(i為虛數(shù)單位),
則|z|=$|\frac{1-2i}{3-1}|$=$\frac{|1-2i|}{|3-i|}$=$\frac{\sqrt{{1}^{2}+(-2)^{2}}}{\sqrt{{3}^{2}+(-1)^{2}}}$=$\frac{\sqrt{5}}{\sqrt{10}}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評 本題考查復(fù)數(shù)的模的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程是y=$\frac{4}{3}$x,則該雙曲線的離心率是( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{7}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)與拋物線y2=8x交于兩點(diǎn)A,B,且|AB|=8,則該雙曲線的焦點(diǎn)到其漸近線的距離為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.4D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.過雙曲線x2-$\frac{y^2}{15}$=1的右支上一點(diǎn)P,分別向圓C1:(x+4)2+y2=4和圓C2:(x-4)2+y2=1作切線,切點(diǎn)分別為M,N,則|PM|2-|PN|2的最小值為( 。
A.10B.13C.16D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法中正確的是( 。
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.“若$α=\frac{π}{6}$,則$sinα=\frac{1}{2}$”的否命題是“若$α≠\frac{π}{6}$,則$sinα≠\frac{1}{2}$
C.若$p:?{x_0}∈R,x_0^2-{x_0}-1>0$,則¬p:?x∈R,x2-x-1<0
D.若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E為AB的中點(diǎn),將四邊形AEFD沿EF折起使面AEFD⊥面EBCF,過E作EF∥AD,
(1)若G為DF的中點(diǎn),求證:EG∥面BCD;
(2)若AD=2,試求多面體AD-BCFE體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的函數(shù)f(x)滿足f(x-1)=f(1-x),且x≥0時(shí),f(x)=2|x-m|-2,f(-1)=-1,則f(x)<0的解集為( 。
A.(-∞,-2)∪(2,+∞)B.(-2,2)C.(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在三棱柱ABC-A1BlC1中,已知側(cè)棱與底面垂直,∠CAB=90°,且AC=1,AB=2,E為BB1的中點(diǎn),M為AC上一點(diǎn),AM=$\frac{2}{3}$AC.
(I)若三棱錐A1-C1ME的體積為$\frac{{\sqrt{2}}}{6}$,求AA1的長;
(Ⅱ)證明:CB1∥平面A1EM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C的兩條漸近線為l1,l2,過右焦點(diǎn)F作FB∥l1且交l2于點(diǎn)B,過點(diǎn)B作BA⊥l2且交于l1于點(diǎn)A,若AF⊥x軸,則雙曲線C的離心率為( 。
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案