【題目】甲乙兩人分別投擲兩顆骰子與一顆骰子,設甲的兩顆骰子的點數分別為與,乙的骰子的點數為,則擲出的點數滿足的概率為________(用最簡分數表示).
科目:高中數學 來源: 題型:
【題目】如果存在常數a,使得數列{an}滿足:若x是數列{an}中的一項,則a-x也是數列{an}中的一項,稱數列{an}為“兌換數列”,常數a是它的“兌換系數”.
(1)若數列:2,3,6,m(m>6)是“兌換系數”為a的“兌換數列”,求m和a的值;
(2)已知有窮等差數列{bn}的項數是n0(n0≥3),所有項之和是B,求證:數列{bn}是“兌換數列”,并用n0和B表示它的“兌換系數”;
(3)對于一個不少于3項,且各項皆為正整數的遞增數列{cn},是否有可能它既是等比數列,又是“兌換數列”?給出你的結論,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某旅游勝地欲開發(fā)一座景觀山,從山的側面進行勘測,迎面山坡線由同一平面的兩段拋物線組成,其中所在的拋物線以為頂點、開口向下,所在的拋物線以為頂點、開口向上,以過山腳(點)的水平線為軸,過山頂(點)的鉛垂線為軸建立平面直角坐標系如圖(單位:百米).已知所在拋物線的解析式,所在拋物線的解析式為
(1)求值,并寫出山坡線的函數解析式;
(2)在山坡上的700米高度(點)處恰好有一小塊平地,可以用來建造索道站,索道的起點選擇在山腳水平線上的點處,(米),假設索道可近似地看成一段以為頂點、開口向上的拋物線當索道在上方時,索道的懸空高度有最大值,試求索道的最大懸空高度;
(3)為了便于旅游觀景,擬從山頂開始、沿迎面山坡往山下鋪設觀景臺階,臺階每級的高度為20厘米,長度因坡度的大小而定,但不得少于20厘米,每級臺階的兩端點在坡面上(見圖).試求出前三級臺階的長度(精確到厘米),并判斷這種臺階能否一直鋪到山腳,簡述理由?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若滿足為上奇函數且為上偶函數,求的值;
(2)若函數滿足對恒成立,函數,求證:函數是周期函數,并寫出的一個正周期;
(3)對于函數,,若對恒成立,則稱函數是“廣義周期函數”, 是其一個廣義周期,若二次函數的廣義周期為(不恒成立),試利用廣義周期函數定義證明:對任意的,,成立的充要條件是.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖1是某斜拉式大橋圖片,為了了解橋的一些結構情況,學校數學興趣小組將大橋的結構進行了簡化,取其部分可抽象成圖2所示的模型,其中橋塔、與橋面垂直,通過測量得知,,當為中點時,.
(1)求的長;
(2)試問在線段的何處時,達到最大.
圖1 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記無窮數列的前項中最大值為,最小值為,令
(Ⅰ)若,請寫出的值;
(Ⅱ)求證:“數列是等差數列”是“數列是等差數列”的充要條件;
(Ⅲ)若 ,求證:存在,使得,有
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com