10.如圖,在正三棱錐A-BCD中,E,F(xiàn)分別是AB,BC的中點(diǎn),EF⊥DE且BC=2,則正三棱錐A-BCD的體積是$\frac{\sqrt{2}}{3}$.

分析 由題意判定正三棱錐的形狀,三條側(cè)棱兩兩垂直,推出是正方體的一個(gè)角,然后轉(zhuǎn)化頂點(diǎn)和底面從而求其體積.

解答 解:∵EF∥AC,EF⊥DE,
∴AC⊥DE,
∵AC⊥BD(正三棱錐性質(zhì)),
∴AC⊥平面ABD 所以正三棱錐A-BCD是正方體的一個(gè)角,
∵BC=2,
∴AB=$\sqrt{2}$,
∴V=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×\sqrt{2}$=$\frac{\sqrt{2}}{3}$
故答案為:$\frac{\sqrt{2}}{3}$.

點(diǎn)評 本題考查棱錐的體積,考查邏輯思維能力,空間想象能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,直線y=x+1經(jīng)過橢圓C的左焦點(diǎn).
(I)求橢圓C的方程;
(Ⅱ)若過點(diǎn)M(2,0)的直線與橢圓C交于A,B兩點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(其中O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD的底面為直角梯形,且∠BAD=∠ADC=90°,E,F(xiàn),G分別為PA,PB,PC的中點(diǎn),直線PB⊥平面EFG,AB=$\frac{1}{3}$DC=$\frac{1}{3}AD$=1.
(1)若點(diǎn)M∈平面EFG,且與點(diǎn)E不重合,判斷直線EM與平面ABCD的關(guān)系,并說明理由;
(2)若PB=4,求四棱錐C-ABFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在圓O中,AB,CD是互相平行的兩條弦,直線AE與圓O相切于點(diǎn)A,且與CD的延長線交于點(diǎn)E,求證:AD2=AB•ED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,E,F(xiàn)分別是CC1,BC的中點(diǎn).
(Ⅰ)求證:B1F⊥平面AEF;
(Ⅱ)求銳二面角B1-AE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸是短軸的兩倍,點(diǎn)P($\sqrt{3}$,$\frac{1}{2}$)在橢圓上.不過原點(diǎn)的直線l與橢圓相交于A、B兩點(diǎn),設(shè)直線OA、l、OB的斜率分別為k1、k、k2,且k1、k、k2恰好構(gòu)成等比數(shù)列.
(Ⅰ)求橢圓C的方程.
(Ⅱ)試探究|OA|2+|OB|2是否為定值?若是,求出這個(gè)值;否則求出它的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足asinB-$\sqrt{3}$bcosA=0
(1)求A;
(2)當(dāng)a=$\sqrt{7}$,b=2時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的離心率為2,焦點(diǎn)到漸近線的距離為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a=tan$\frac{3}{4}$π,b=cos$\frac{π}{4}$,c=(1+sin$\frac{6}{5}$π)0,則a,b,c的大小關(guān)系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

同步練習(xí)冊答案