【題目】已知點(diǎn),是函數(shù)圖象上的任意兩點(diǎn),且角的終邊經(jīng)過點(diǎn),若時(shí),的最小值為.
(1)求函數(shù)的解析式;
(2)若方程在內(nèi)有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
【答案】(1);(2) 或..
【解析】
(1)由角的終邊經(jīng)過點(diǎn)可得,由時(shí),的最小值為可得周期,即得,即可求出函數(shù)的解析式;(2)先解得在的值域,將問題轉(zhuǎn)化成一元二次方程在給定的范圍內(nèi)解的個(gè)數(shù)問題,再將一元二次方程個(gè)數(shù)問題轉(zhuǎn)化成二次函數(shù)與直線交點(diǎn)為個(gè)數(shù)問題,可解得的值.
(1)角的終邊經(jīng)過點(diǎn),,,.
由時(shí),的最小值為,得,即,.
∴
(2)∴,∴.設(shè),
問題轉(zhuǎn)化研究方程在(0,2)內(nèi)解的情況.
當(dāng)時(shí)方程在(0,2)內(nèi)解只有一個(gè),對應(yīng)x的解有兩個(gè)
∴m的取值范圍是:或.
【點(diǎn)晴】
本題考查三角函數(shù)的定義、三角函數(shù)解析式以及根據(jù)函數(shù)零點(diǎn)求參數(shù),考查了轉(zhuǎn)化與化歸的思想,以及數(shù)形結(jié)合解決問題的能力.本題屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與橢圓相交于點(diǎn)M(0,1),N(0,-1),且橢圓的離心率為.
(1)求的值和橢圓C的方程;
(2)過點(diǎn)M的直線交圓O和橢圓C分別于A,B兩點(diǎn).
①若,求直線的方程;
②設(shè)直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面, , , , 分別為線段上的點(diǎn),且, , .
(1)求證: 平面;
(2)若與平面所成的角為,求平面與平面所成的銳二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類菠菜.根據(jù)統(tǒng)計(jì),該基地的西紅種增加量y(百斤)與使用某種液體肥料x(千克)之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖.依據(jù)折線圖及其提供的數(shù)據(jù),是否可用線性回歸模型擬合y與x的關(guān)系?如果可以,請計(jì)算相關(guān)系數(shù)r并加以說明(精確到0.01),(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】工廠需要建造一個(gè)倉庫,根據(jù)市場調(diào)研分析,運(yùn)費(fèi)與工廠和倉庫之間的距離成正比,倉儲費(fèi)與工廠和倉庫之間的距離成反比,當(dāng)工廠和倉庫之間的距離為4千米時(shí),運(yùn)費(fèi)為20萬元,倉儲費(fèi)為5萬元.求:工廠和倉庫之間的距離為多少千米時(shí),運(yùn)費(fèi)與倉儲費(fèi)之和最小,最小為多少萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2002年8月在北京召開的國際數(shù)學(xué)家大會會標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一大正方形,設(shè)直角三角形中較小的銳角為,大正方形的面積是1,小正方形的面積是.若,,則( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com