20.若焦點在x軸上過點$(1,\frac{3}{2})$的橢圓焦距為2,則橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

分析 設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由題意可得a2-b2=1,代入點$(1,\frac{3}{2})$,解方程可得a,b的值,進而得到橢圓方程.

解答 解:設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意可得c=1,即有a2-b2=1,
又橢圓過點$(1,\frac{3}{2})$,即有$\frac{1}{{a}^{2}}$+$\frac{9}{4^{2}}$=1,
解方程可得a=2,b=$\sqrt{3}$,
則橢圓方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
故答案為:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

點評 本題考查橢圓的方程的求法,注意運用方程的思想,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2+bx+c(a≠0),滿足f(0)=2,f(x+1)-f(x)=2x-1
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[-1,2]時,求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個幾何體的三視圖如圖所示則該幾何體的體積為$\frac{8}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.5<k<6是方程為$\frac{x^2}{k-5}+\frac{y^2}{6-k}=1$的曲線表示橢圓時的必要不充分條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=$\left\{\begin{array}{l}{x-2,x≥2}\\{\frac{1}{2}x-1,x<2}\end{array}\right.$,g(x)=log3x,則函數(shù)F(x)=f(x)-g(x)有( 。﹤零點.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3+alnx
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a=0時,求曲線y=f(x)過點(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.著名的Dirichlet函數(shù)$D(x)=\left\{\begin{array}{l}1,x取有理數(shù)時\\ 0,x取無理數(shù)時\end{array}\right.$,則$D(\sqrt{2})$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.平面向量$\overrightarrow a$、$\overrightarrow b$滿足$(\overrightarrow a+\overrightarrow b)(2\overrightarrow a-\overrightarrow b)=-4$,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=4,則$\overrightarrow a$與$\overrightarrow b$的夾角等于$\frac{π}{3}$,$\overrightarrow a$在$\overrightarrow b$上的投影為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)f(x)對任意的實數(shù)x,均有f(x-1)+f(x+1)>2f(x),則稱函數(shù)f(x)具有性質(zhì)P.
(1)判斷函數(shù)y=x3是否具有性質(zhì)P,并說明理由;
(2)求證:函數(shù)y=ax(a>0且a≠1)具有性質(zhì)P;
(3)若函數(shù)f(x)具有性質(zhì)P,且f(0)=f(n)=0(n>2,n∈N*).
求證:對任意i∈{1,2,3,…,n-1}都有f(i)≤0.

查看答案和解析>>

同步練習(xí)冊答案