2.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ADC=45°,AD=AC=2,O為AC的中點,PO⊥平面ABCD且PO=6,M為BD的中點.
(1)證明:AD⊥平面PAC;
(2)求直線AM與平面ABCD所成角的正切值.

分析 (1)由PO⊥平面ABCD,得PO⊥AD,由∠ADC=45°,AD=AC,得AD⊥AC,從而證明AD⊥平面PAC.
(2)取DO中點N,連接MN,AN,由M為PD的中點,知MN∥PO,由PO⊥平面ABCD,得MN⊥平面ABCD,故∠MAN是直線AM與平面ABCD所成的角,由此能求出直線AM與平面ABCD所成角的正切值.

解答 解:(1)證明:∵PO⊥平面ABCD,且AD?平面ABCD,
∴PO⊥AD,
∵∠ADC=45°且AD=AC=1,
∴∠ACD=45°,
∴∠DAC=90° ,
∴AD⊥AC,
∵AC?平面PAC,PO?平面PAC,且AC∩PO=O,
∴由直線和平面垂直的判定定理知 AD⊥平面PAC.
(2)解:取DO中點N,連接MN,AN,
由PO⊥平面ABCD,得MN⊥平面ABCD,
∴∠MAN是直線AM與平面ABCD所成的角,
∵M為PD的中點,
∴MN∥PO,且MN=$\frac{1}{2}$PO=3,
AN=$\frac{1}{2}$DO=$\frac{\sqrt{5}}{2}$,
在Rt△ANM中,tan∠MAN=$\frac{MN}{AN}$=$\frac{3}{\frac{\sqrt{5}}{2}}$=$\frac{6\sqrt{5}}{5}$,
即直線AM與平面ABCD所成角的正切值為$\frac{6\sqrt{5}}{5}$.

點評 本題考查直線與平面垂直的證明,考查直線與平面所成角的正切值的求法.解題時要認真審題,仔細解答,注意合理地化空間問題為平面問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.在四棱錐P-ABCD中,PA⊥底面ABCD,其中PA=2AB=2AD=2,G為三角形BCD的重心,則PG與底面ABCD所成角的正弦值為( 。
A.$3\sqrt{2}$B.$\frac{3\sqrt{11}}{11}$C.$\frac{{\sqrt{19}}}{19}$D.$\frac{{3\sqrt{19}}}{19}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在三棱柱ABC-A1B1C1中,面積為$\frac{9}{2}$的△ACB是等腰直角三角形且∠ACB=90°,C1B⊥面ABC,C1B=3.
(1)若AB的中點為S,證明:CS⊥C1A.
(2)設$T(3-λ,λ,\frac{4λ+3}{2})$,是否存在實數(shù)λ,使得直線TB與平面ACC1A1的夾角為$\frac{π}{6}$?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖所示,已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標原點O,過點,M(4,0)的直線l與拋物線C2分別相交于A,B兩點.
(1)求證:以AB為直徑的圓過原點O;
(2)若坐標原點關于直線l的對稱點P在拋物線C2上,直線l與橢圓C1相切,求橢圓C1的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設A(-1,0),B是圓F:(x-1)2+y2=16上的動點,AB垂直平分線交BF于P,則動點P的軌跡方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)$f(x)=cosx({\sqrt{3}sinx+cosx})$,x∈R.
(1)求函數(shù)f(x)的最大值;
(2)若$f({\frac{θ}{2}})=\frac{3}{4}$,θ∈R,求$f({θ+\frac{π}{3}})$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若棱長為a的正方體的表面積等于一個球的表面積,棱長為b的正方體的體積等于該球的體積,則a,b的大小關系是a<b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}({1-2a})x+3a,x<1\\ lnx,x≥1\end{array}\right.$的值域為R,則實數(shù)a的取值范圍是( 。
A.$[{-1,\frac{1}{2}})$B.$({-1,\frac{1}{2}})$C.$({0,\frac{1}{2}})$D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知y=f(x)的導函數(shù)為y=f'(x),且在x=1處的切線方程為y=-x+3,則f(1)-f'(1)=( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案