分析 (1)推導出AC⊥BC,以B為原點,BC為x軸,在平面ABC中過B作AC的平行線為y軸,BC1為z軸,建立 空間直角坐標系,利用向量法能證明CS⊥C1A.
(2)求出$\overrightarrow{BT}$=$(3-λ,λ,\frac{4λ+3}{2})$,平面ACC1A1的法向量$\overrightarrow{n}$=(1,0,1),利用向量法推導出不存在實數(shù)λ,使得直線TB與平面ACC1A1的夾角為$\frac{π}{6}$.
解答 證明:(1)∵面積為$\frac{9}{2}$的△ACB是等腰直角三角形且∠ACB=90°,
∴AC⊥BC,AC=BC=3,AB=3$\sqrt{2}$,
∵C1B⊥面ABC,
∴以B為原點,BC為x軸,在平面ABC中過B作AC的平行線為y軸,
BC1為z軸,建立 空間直角坐標系,
∵C1B=3,∴C(3,0,0),B(0,0,0),A(3,-3,0),S($\frac{3}{2},-\frac{3}{2}$,0),C1(0,0,3),
∴$\overrightarrow{CS}$=(-$\frac{3}{2}$,-$\frac{3}{2}$,0),$\overrightarrow{{C}_{1}A}$=(3,-3,-3),
∴$\overrightarrow{CS}$•$\overrightarrow{{C}_{1}A}$=-$\frac{9}{2}+\frac{9}{2}+0$=0,
∴CS⊥C1A.
解:(2)∵$T(3-λ,λ,\frac{4λ+3}{2})$,∴$\overrightarrow{BT}$=$(3-λ,λ,\frac{4λ+3}{2})$,
$\overrightarrow{AC}$=(0,3,0),$\overrightarrow{A{C}_{1}}$=(-3,3,3),
設(shè)平面ACC1A1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=3y=0}\\{\overrightarrow{n}•\overrightarrow{A{C}_{1}}=-3x+3y+3z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
∵直線TB與平面ACC1A1的夾角為$\frac{π}{6}$,
∴sin$\frac{π}{6}$=|cos<$\overrightarrow{TB},\overrightarrow{n}$>|=$\frac{|\overrightarrow{TB}•\overrightarrow{n}|}{|\overrightarrow{TB}|•|\overrightarrow{n}|}$=$\frac{|3-λ+\frac{4λ+3}{2}|}{\sqrt{(3-λ)^{2}+{λ}^{2}+(\frac{4λ+3}{2})^{2}}•\sqrt{2}}$=$\frac{1}{2}$,
解得λ=$\frac{18±3\sqrt{322}}{22}$,不舍題意,
故不存在實數(shù)λ,使得直線TB與平面ACC1A1的夾角為$\frac{π}{6}$.
點評 本題考查線線垂直的證明,考查滿足條件的實數(shù)值是否存在的判斷與求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{6}}}{6}$ | C. | $\frac{{2\sqrt{3}}}{6}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2ln 2 | B. | 2-ln 2 | C. | 4-ln 2 | D. | 4-2ln 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com