9.某校高一學(xué)雷鋒志愿小組共有8人,其中一班、二班、三班、四班各2人,現(xiàn)在從中任選3人,要求每班至多選1人,不同的選取方法的種數(shù)為32.

分析 由題意可知,這3人來之不同的三個(gè)班級(jí),每個(gè)班級(jí)的人數(shù)選擇都有2種,問題得以解決.

解答 解:現(xiàn)在從中任選3人,要求每班至多選1人,則這3人來之不同的三個(gè)班級(jí),每個(gè)班級(jí)的人數(shù)選擇都有2種,故有C43C21C21C21=32種,
故答案為:32.

點(diǎn)評(píng) 本題考查了分步計(jì)數(shù)原理,關(guān)鍵是分步,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.不等式-1≤tan($\frac{x}{2}$-$\frac{π}{3}$)≤$\sqrt{3}$的解集為[$\frac{π}{6}$+2kπ,2kπ+$\frac{4π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知直線l:$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù))與圓C:$\left\{\begin{array}{l}{x=2+3cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù))相交于A,B兩點(diǎn).
(1)求直線l及圓C的普通方程
(2)已知F(1,0),求|FA|+|FB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC的頂點(diǎn)A、B的坐標(biāo)分別為(-$\sqrt{3}$,0)、($\sqrt{3}$,0),C為動(dòng)點(diǎn),且滿足sinB+sinA=$\sqrt{2}$sinC.
(1)求點(diǎn)C的軌跡L的方程;
(2)設(shè)M(x0,y0)是曲線L上的任一點(diǎn),從原點(diǎn)O向圓M:(x-x02+(y-y02=2作兩條切線,分別交曲線L于點(diǎn)P、Q.
①若直線OP、OQ的斜率均存在,并記為k1,k2,求證:k1k2為定值;
②試問OP2+OQ2是否為定值?若是,求出該值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知兩點(diǎn)A(2,0),B(-2,0),直線l過點(diǎn)B且與x軸垂直,點(diǎn)C是l上異于點(diǎn)B的動(dòng)點(diǎn),直線BP垂直線段OC并交線段AC于點(diǎn)P,記點(diǎn)P的軌跡為曲線Γ.
(1)求曲線Γ的方程;
(2)過點(diǎn)D(-1,0)的直線與曲線 Γ交于M,N兩點(diǎn),直線AM,AN分別與l交于E,F(xiàn)兩點(diǎn).當(dāng)△AEF的面積是△AMN的面積的2倍時(shí),求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)$\frac{2i}{1-i}$(i是虛數(shù)單位)的虛部是( 。
A.-1B.2C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足6Sn=an2+3an+2,且a2是a1和a6的等比中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)符合[x]表示不超過實(shí)數(shù)x的最大整數(shù),如[log23]=1,[log25]=2.記${b_n}=[{log_2}\frac{{{a_n}+5}}{3}]$,求數(shù)列$\{{2^n}•{b_{2^n}}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,且長軸長為12,離心率為$\frac{1}{2}$,則橢圓方程為( 。
A.$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{108}$=1B.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{32}$=1C.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{36}$=1D.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.作為市政府為民辦實(shí)事之一的公共自行車建設(shè)工作已經(jīng)基本完成了,相關(guān)部門準(zhǔn)備對(duì)該項(xiàng)目進(jìn)行驗(yàn)收,驗(yàn)收的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于0.8,否則該項(xiàng)目需進(jìn)行整改,該部門為了了解市民對(duì)該項(xiàng)目的滿意程度,在公共自行車自助點(diǎn)隨機(jī)訪問了前來使用的100名市民,并根據(jù)這100名市民對(duì)該項(xiàng)目滿意程度的評(píng)分(滿分100分),繪制了如圖頻率分布直方圖:
(1)為了了解部分市民對(duì)公共自行車建設(shè)項(xiàng)目評(píng)分較低的原因,該部門從評(píng)分低于60分的市民中隨機(jī)抽取2人進(jìn)行座談,求這2人評(píng)分恰好都在[50,60)的概率;
(2)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過驗(yàn)收,并說明理由.
(注:滿意指數(shù)=$\frac{滿意程度的平均得分}{100}$)

查看答案和解析>>

同步練習(xí)冊答案