14.安排甲、乙、丙、丁四人參加周六、周日兩天的公益活動,每人參加一次且每天都有人參加,則甲和乙不在同一天參加活動的概率是( 。
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{4}{7}$D.$\frac{2}{7}$

分析 根據(jù)分類計數(shù)原理可得所有的基本事件,再列舉出甲乙在同一天的基本事件,繼而得到甲和乙不在同一天參加活動的基本事件,根據(jù)概率公式計算即可.

解答 解:基本事件分兩類,一天3人,一天1人,或每天各有2人,共有${C}_{4}^{3}•{A}_{2}^{2}$+${C}_{4}^{2}$=14種,
其中甲乙在同一天的基本事件有(甲乙丙,。,(甲乙丁,丙),(丁,甲乙丙),(丙,甲乙。滓,丙丁),(丙丁,甲乙),共有6種,
則甲和乙不在同一天參加活動的基本事件有14-6=8種,
故甲和乙不在同一天參加活動的概率是$\frac{8}{14}$=$\frac{4}{7}$,
故選:C

點評 本題考主要查古典概型問題,事件和它的對立事件概率之間的關(guān)系. 可以列舉出試驗發(fā)生包含的事件和滿足條件的事件,列舉法,是解決古典概型問題的一種重要的解題方法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知sinα=$\frac{\sqrt{2}}{3}$,α∈(0,$\frac{π}{2}$),則cos(π-α)=$-\frac{\sqrt{7}}{3}$,cos2α=$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若sinx=$\frac{1}{3}$,$x∈[{\frac{π}{2},\frac{3π}{2}}]$,則x=$π-arcsin\frac{1}{3}$.(結(jié)果用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{lnx+a}{{e}^{x}}$(a∈R,e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線與x軸平行,求a的值;
(Ⅱ)設(shè)g(x)=(x3+2x2+2x)f′(x),其中f′(x)為f(x)的導函數(shù),證明:對任意x>0,g(x)<2+$\frac{2}{{e}^{a+1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的右焦點F作斜率k=-1的直線交橢圓于A,B兩點,且$\overrightarrow{OA}+\overrightarrow{OB}與\overrightarrow a=(1,\frac{1}{3})$共線.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上任意一點,且$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R)證明:m2+n2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知向量$\overrightarrow{OA}$=(3,-4)$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(2m,m+1)若$\overrightarrow{AB}$∥$\overrightarrow{OC}$,則實數(shù)m的值為( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)的導函數(shù)為 f′(x),對任意x∈R都有f(x)>f′(x)成立,則(  )
A.3f(ln2)<2f(ln3)B.3f(ln2)=2f(ln3)
C.3f(ln2)>2f(ln3)D.3f(ln2)與2f(ln3)的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)H、P是△ABC所在平面上異于A、B、C的兩點,用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow{h}$分別表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$,已知$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow{c}$•$\overrightarrow{h}$=$\overrightarrow$•$\overrightarrow{c}$+$\overrightarrow{a}$•$\overrightarrow{h}$=$\overrightarrow{c}$•$\overrightarrow{a}$+$\overrightarrow$•$\overrightarrow{h}$,$|{\overrightarrow{AH}}|=1$,$|{\overrightarrow{BH}}|=\sqrt{2}$,$|{\overrightarrow{BC}}|=\sqrt{3}$,點O是△ABC外接圓的圓心,則△AOB,△BOC,△AOC的面積之比為(  )
A.$1:\sqrt{2}:\sqrt{3}$B.$2:\sqrt{3}:1$C.$1:\sqrt{3}:2$D.$\sqrt{2}:1:\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知A(-1,2,7),B(-3,10,-9),則線段AB中點到坐標原點的距離是( 。
A.$\sqrt{21}$B.21C.$\sqrt{41}$D.42

查看答案和解析>>

同步練習冊答案