3.已知集合A={x|(ax-1)(ax+2)≤0},集合B={x|-2≤x≤4}.若x∈B是x∈A的充分不必要條件,求實(shí)數(shù)a的取值范圍.

分析 根據(jù)充分條件和必要條件的定義,轉(zhuǎn)化為集合的關(guān)系進(jìn)行求解.

解答 解:(1)a>0時(shí),$A=[-\frac{2}{a},\frac{1}{a}]$,若x∈B是x∈A的充分不必要條件,
所以$-2≥-\frac{2}{a},4≤\frac{1}{a}$,$0<a≤\frac{1}{4}$,檢驗(yàn)$a=\frac{1}{4}$符合題意;┅┅┅┅┅┅┅(4分)
(2)a=0時(shí),A=R,符合題意;┅┅┅┅┅┅┅(8分)
(3)a<0時(shí),$A=[\frac{1}{a},-\frac{2}{a}]$,若x∈B是x∈A的充分不必要條件,
所以$-2≥\frac{1}{a},4≤-\frac{2}{a}$,$-\frac{1}{2}≤a<0$,檢驗(yàn)$a=-\frac{1}{2}$不符合題意.
綜上$a∈(-\frac{1}{2},\frac{1}{4}]$.┅┅┅┅┅┅┅(12分)

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的應(yīng)用,根據(jù)定義轉(zhuǎn)化為集合關(guān)系是解決本題的關(guān)鍵.注意要進(jìn)行分類討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x+2y-3≥0}\\{2x+y-3≤0}\end{array}\right.$,$\overrightarrow{a}$=(y,m+x),$\overrightarrow$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow$,則m的最小值為( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≤1\\ x+y+2≥0\\ kx-y≥0\end{array}\right.$,若目標(biāo)函數(shù)z=2x-y僅在點(diǎn)(1,k)處取得最小值,則實(shí)數(shù)k的取值范圍是( 。
A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算:
(1)log3$\sqrt{27}-{log_3}\sqrt{3}+lg25+lg4+ln({e^2})$
(2)$(-2•\root{3}{a}•{b^{\frac{1}{2}}})(3•\root{3}{a^2}•{b^{\frac{1}{3}}})÷(-4•{a^{\frac{3}{4}}}•\root{6}{b^5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=$\frac{3}{2}$an-3,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.與直線3x-2y=0的斜率相等,且過點(diǎn)(-4,3)的直線方程為( 。
A.y-3=-$\frac{3}{2}$(x+4)B.y+3=$\frac{3}{2}$(x-4)C.y-3=$\frac{3}{2}$(x+4)D.y+3=-$\frac{3}{2}$(x-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知偶函數(shù)f(x)的定義域?yàn)镽,且在(-∞,0)上是增函數(shù),試比較$f(-\frac{3}{4})$與f(a2-a+1)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=$\sqrt{{a}^{2}+^{2}}$sin(ωx+φ),x∈R,其中a,b,ω都為正數(shù),在一個(gè)周期內(nèi)的圖象如圖,滿足f(x)<$\frac{{a}^{2}+^{2}}{10}$的x的取值范圍是( 。
A.(-∞,2kπ),k∈ZB.(2kπ-π,2kπ),k∈ZC.(2kπ-2π,2kπ),k∈ZD.(2kπ-$\frac{4π}{3}$,2kπ),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,-2),則<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.B.60°C.90°D.180°

查看答案和解析>>

同步練習(xí)冊答案