【題目】在四面體SABC中若三條側(cè)棱SASB,SC兩兩互相垂直,且SA=1,SB=,SC=,則四面體ABCD的外接球的表面積為( )

A.8πB.6πC.4πD.2π

【答案】B

【解析】

由題意一個(gè)四面體SABC的三條側(cè)棱SASB、SC兩兩互相垂直,可知,四面體SABC是長(zhǎng)方體的一個(gè)角,擴(kuò)展為長(zhǎng)方體,兩者的外接球相同,長(zhǎng)方體的對(duì)角線就是球的直徑,求出直徑即可求出球的表面積.

四面體SABC中,共頂點(diǎn)S的三條棱兩兩相互垂直,且其長(zhǎng)分別為1,,,

所以四面體SABC是長(zhǎng)方體的一個(gè)角,擴(kuò)展為長(zhǎng)方體,

又四面體SABC的四個(gè)頂點(diǎn)同在一個(gè)球面上,

而四面體SABC的外接球與長(zhǎng)方體的外接球相同,長(zhǎng)方體的對(duì)角線就是球的直徑,

所以球的直徑為:,

外接球的表面積為:4π×R26π

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中為真命題的是(  )

A.命題“若,則”的否命題

B.命題“若xy,則x|y|”的逆命題

C.命題“若x1,則”的否命題

D.命題“已知,若,則ab”的逆命題、否命題、逆否命題均為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓,點(diǎn),過點(diǎn)的直線交圓、兩點(diǎn).

1)試判斷直線與圓的位置關(guān)系;

2)設(shè)弦的中點(diǎn)為,求的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,,當(dāng)n≥2時(shí),其前n項(xiàng)和滿足,設(shè)數(shù)列的前n項(xiàng)和為,則滿足≥5的最小正整數(shù)n是( )

A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上是增函數(shù),,對(duì)于命題“若,則”,有下列結(jié)論:

①此命題的逆命題為真命題;

②此命題的否命題為真命題;

③此命題的逆否命題為真命題;

④此命題的逆命題和否命題有且只有一個(gè)為真命題.

其中正確的結(jié)論的序號(hào)為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)遞增區(qū)間.

(2)在ΔABC中,角A,BC所對(duì)的邊分別為a,b,c,若f(A)=1,c=10,cosB=,求ΔABC的中線AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是正方形,交于點(diǎn)底面,的中點(diǎn).

1)求證:平面

2)求證:;

3)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義域?yàn)?/span>R的周期函數(shù),最小正周期為2,

f(1x)f(1x),當(dāng)-1≤x≤0時(shí),f(x)=-x.

(1)判斷f(x)的奇偶性;

(2)試求出函數(shù)f(x)在區(qū)間[1,2]上的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.為曲線上的動(dòng)點(diǎn),點(diǎn)在射線上,且滿足.

(Ⅰ)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(Ⅱ)設(shè)軸交于點(diǎn),過點(diǎn)且傾斜角為的直線相交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案