2.求首項是2,公差為3的等差數(shù)列的前2008項之和.

分析 代入等差數(shù)列前n項和公式化簡計算即可.

解答 解:由等差數(shù)列前n項和公式可得,
S2008=2008×2+$\frac{2008•2007}{2}•3$
=4016+6045084
=6049100.

點評 本題考查了等差數(shù)列的求和公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在一次對人體脂肪百分比和年齡關(guān)系的研究中,研究人員獲得如下一組樣本數(shù)據(jù):
年齡x21243441
脂肪y9.517.524.928.1
由表中數(shù)據(jù)求得y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=0.6x+$\stackrel{∧}{a}$,若年齡x的值為50,則脂肪y的估計值為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}中an≠0,若a1=2,2an+1•an=n(an-an+1)+an,則數(shù)列{an}的通項公式為an=$\frac{2n}{4n-3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知{an}是等差數(shù)列.
(1)若a1+a3+a7+a9+a20=55,求a3+a13的值.
(2)若a3+a7+a11=18,a3a7a11=120,求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和Sn滿足$\frac{{S}_{n}}{{a}_{n}}$=$\frac{1}{3}$n+r.
(1)若a1=2,求數(shù)列{an}的通項公式;
(2)在(1)的條件下,設(shè)bn=$\frac{1}{{a}_{2n-1}}$(n∈N*),數(shù)列{bn}的前n項和為Tn.求證:Tn≥$\frac{2n}{3n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.計算:$\frac{4co{s}^{2}(-\frac{15π}{4})}{tan(-\frac{11π}{3})-\sqrt{2}sin(\frac{21π}{4})}$的值為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求證:tan$\frac{α}{2}$=$\frac{sinα}{1+cosα}$,tan$\frac{α}{2}$=$\frac{1-cosα}{sinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直線y=kx+b中,若k,b可分別取0到9這10個數(shù)字,則一共可以構(gòu)成多少條不同的直線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{m}$、$\overrightarrow{n}$均為單位向量,且向量$\overrightarrow{m}$與$\overrightarrow{n}$反向,則$\overrightarrow{m}$•$\overrightarrow{n}$等于( 。
A.-1B.0C.1D.±1

查看答案和解析>>

同步練習(xí)冊答案