A. | ($\sqrt{2}$,+∞) | B. | (1,$\sqrt{2}$) | C. | [$\sqrt{3}$,+∞) | D. | (1,$\sqrt{3}$) |
分析 求出F的坐標(biāo),F(xiàn)G的中點(diǎn)和斜率,可得線段FG的垂直平分線方程,由題意可得FG的垂直平分線與雙曲線有交點(diǎn),運(yùn)用漸近線的斜率可得-1>-$\frac{a}$,再由離心率公式計(jì)算即可得到所求范圍.
解答 解:由題意可得F(-c,0),F(xiàn)G的中點(diǎn)為(-$\frac{c}{2}$,$\frac{c}{2}$),
直線FG的斜率為$\frac{c-0}{0+c}$=1,可得FG的垂直平分線的斜率為-1,
即有線段FG的垂直平分線方程為y-$\frac{1}{2}$c=-(x+$\frac{1}{2}$c),即為y=-x.
由雙曲線C上存在點(diǎn)P滿足|PF|=|PG|,
可得FG的垂直平分線與雙曲線有交點(diǎn),
由雙曲線的漸近線方程為y=±$\frac{a}$,
即有-1>-$\frac{a}$,即a<b,可得a2<b2=c2-a2,
可得e=$\frac{c}{a}$>$\sqrt{2}$,
故選:A.
點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),考查離心率的范圍的求法,以及線段的垂直平分線方程的求法,注意運(yùn)用漸近線的斜率與直線的斜率的關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com