3.已知F為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),且雙曲線C的焦距為2c,定點(diǎn)G(0,c),若雙曲線C上存在點(diǎn)P滿足|PF|=|PG|,則雙曲線的離心率的取值范圍是( 。
A.($\sqrt{2}$,+∞)B.(1,$\sqrt{2}$)C.[$\sqrt{3}$,+∞)D.(1,$\sqrt{3}$)

分析 求出F的坐標(biāo),F(xiàn)G的中點(diǎn)和斜率,可得線段FG的垂直平分線方程,由題意可得FG的垂直平分線與雙曲線有交點(diǎn),運(yùn)用漸近線的斜率可得-1>-$\frac{a}$,再由離心率公式計(jì)算即可得到所求范圍.

解答 解:由題意可得F(-c,0),F(xiàn)G的中點(diǎn)為(-$\frac{c}{2}$,$\frac{c}{2}$),
直線FG的斜率為$\frac{c-0}{0+c}$=1,可得FG的垂直平分線的斜率為-1,
即有線段FG的垂直平分線方程為y-$\frac{1}{2}$c=-(x+$\frac{1}{2}$c),即為y=-x.
由雙曲線C上存在點(diǎn)P滿足|PF|=|PG|,
可得FG的垂直平分線與雙曲線有交點(diǎn),
由雙曲線的漸近線方程為y=±$\frac{a}$,
即有-1>-$\frac{a}$,即a<b,可得a2<b2=c2-a2,
可得e=$\frac{c}{a}$>$\sqrt{2}$,
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),考查離心率的范圍的求法,以及線段的垂直平分線方程的求法,注意運(yùn)用漸近線的斜率與直線的斜率的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}是等差數(shù)列,an+1>an,a1•a10=160,a3+a8=37.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若從數(shù)列{an}中依次取出第2項(xiàng),第4項(xiàng),第8項(xiàng),第2n項(xiàng),按原來(lái)的順序組成一個(gè)新數(shù)列{bn},求Sn=b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,在△ABC所在平面外有一點(diǎn)P,M、N分別是PC和AC上的點(diǎn),過(guò)MN作平面平行于BC,畫出這個(gè)平面與其他各面的交線,并說(shuō)明畫法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知a2+c2=ac+b2,b=$\sqrt{3}$,且a≥c,則2a-c的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}中,a1=2,an+1=2an+3.
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=3x3-ax2+x-5.
(1)若函數(shù)f(x)的單調(diào)減區(qū)間為($\frac{1}{9}$,1),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,已知角A、B、C所對(duì)的邊分別為a,b,c.已知A=$\frac{π}{3}$,a=$\sqrt{3}$,b=2.則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.(x-1)(x+2)(x-5)(x+7)(x-10)中x4的系數(shù)為-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知a>0,b>0,且(a2+$\frac{^{2}}{4}$)=1,則a$\sqrt{1+^{2}}$的最大值為$\frac{5}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案