A. | ($\frac{1}{3}$,$\frac{4}{3}$) | B. | (1,4) | C. | ($\frac{5}{3}$,$\frac{7}{3}$) | D. | (5,7) |
分析 根據(jù)$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,得出$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,兩邊平方后利用完全平方公式及平面向量的數(shù)量積運算法則化簡,利用余弦函數(shù)的值域求出k2的范圍,即可確定出k的范圍.
解答 解:如圖所示
∵D是△ABC的邊BC上一點,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,
∴$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,
兩邊平方得:${\overrightarrow{AD}}^{2}$=$\frac{4}{9}$${\overrightarrow{AB}}^{2}$+$\frac{1}{9}$${\overrightarrow{AC}}^{2}$+$\frac{4}{9}$|$\overrightarrow{AB}$|×|$\overrightarrow{AC}$|cosθ,θ∈(0,π),
即k2=$\frac{4}{9}$×9+$\frac{1}{9}$×1+$\frac{12}{9}$cosθ=$\frac{37}{9}$+$\frac{12}{9}$cosθ∈($\frac{25}{9}$,$\frac{49}{9}$),
又k>0,
∴k的取值范圍是($\frac{5}{3}$,$\frac{7}{3}$).
故選:C.
點評 本題考查了余弦定理,向量共線表示和三角形的應用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,2] | B. | [1,3] | C. | [2,4] | D. | [1,7] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 47 | B. | 25 | C. | -25 | D. | -47 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com