15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的實(shí)軸長(zhǎng)為4$\sqrt{2}$,虛軸的一個(gè)端點(diǎn)與拋物線x2=2py(p>0)的焦點(diǎn)重合,直線y=kx-1與拋物線相切且與雙曲線的一條漸進(jìn)線平行,則p=( 。
A.4B.3C.2D.1

分析 求出拋物線的焦點(diǎn)坐標(biāo),推出雙曲線的漸近線方程,利用直線與拋物線相切求解即可.

解答 解:拋物線x2=2py(p>0)的焦點(diǎn)(0,$\frac{p}{2}$),可得b=$\frac{p}{2}$,a=2$\sqrt{2}$,雙曲線方程為:$\frac{{x}^{2}}{8}-\frac{{4y}^{2}}{{p}^{2}}=1$,
它的漸近線方程為:$±\frac{x}{2\sqrt{2}}=\frac{2y}{p}$,即:$y=±\frac{p}{4\sqrt{2}}x$,
直線y=kx-1與拋物線相切且與雙曲線的一條漸進(jìn)線平行,不妨:k=$\frac{p}{4\sqrt{2}}$,
$\left\{\begin{array}{l}y=\frac{p}{4\sqrt{2}}x-1\\{x}^{2}=2py\end{array}\right.$,可得${x}^{2}=2p(\frac{p}{4\sqrt{2}}x-1)$=$\frac{{p}^{2}}{2\sqrt{2}}x-2p$.
△=${(-\frac{{p}^{2}}{2\sqrt{2}})}^{2}-8p=0$,解得p=±4.
∵p>0,∴p=4.
故選:A.

點(diǎn)評(píng) 本題考查拋物線與雙曲線以及直線方程的綜合應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=lnx+$\frac{a}{x}$(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)+2x在[$\frac{1}{2}$,+∞)單調(diào)遞增,求a的取值范圍;
(3)當(dāng)n∈N*,試比較($\frac{n}{n+1}$)n(n+1)與($\frac{1}{e}$)n+2的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知等比數(shù)列{an}的第5項(xiàng)是二項(xiàng)式(x+$\frac{1}{x}$)4展開式的常數(shù)項(xiàng),則a3•a7( 。
A.5B.18C.24D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)平面區(qū)域D是由雙曲線y2-$\frac{{x}^{2}}{4}$=1的兩條漸近線和拋物線y2=-8x的準(zhǔn)線所圍成的三角形區(qū)域(含邊界),若點(diǎn)(x,y)∈D,則$\frac{2y-x+1}{x+1}$的取值范圍是( 。
A.[-1,$\frac{1}{3}$]B.[-1,1]C.[0,$\frac{1}{3}$]D.[0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知{an}滿足2nan+1=(n+1)an(n∈N*),且a1,1,4a3成等差數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}滿足bn=sin(πan),Sn為數(shù)列{bn}的前n項(xiàng)和,求證:對(duì)任意n∈N*,Sn<2+π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,設(shè)△ABC的面積為S,且2$\sqrt{3}$S-$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,c=2.
(Ⅰ)求角A的大;
(Ⅱ)若a2+b2-c2=$\frac{6}{5}$ab,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.過(guò)點(diǎn)P(3,-1)引直線,使點(diǎn)A(2,-3),B(4,5)到它的距離相等,則這條直線的方程為4x-y-13=0或x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,半徑為2的扇形的圓心角為120°,M,N分別為半徑OP,OQ的中點(diǎn),A為$\widehat{PQ}$上任意一點(diǎn),則$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范圍是[$\frac{3}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AB=2,若棱AB上存在點(diǎn)P,使得D1P⊥PC,則AD的取值范圍是( 。
A.[1,2)B.$({1,\sqrt{2}}]$C.(0,1]D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案