【題目】已知正項(xiàng)等比數(shù)列{an}前n項(xiàng)和為Sn , 且滿(mǎn)足S3= ,a6 , 3a5 , a7成等差數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列bn= ,且數(shù)列bn的前n項(xiàng)的和Tn , 試比較Tn 的大。

【答案】解:(Ⅰ)設(shè)等比數(shù)列的公比為q, 因?yàn)閍6 , 3a5 , a7成等差數(shù)列,
所以6a5=a6+a7
所以6a5=qa5+q2a5
因?yàn)閍5≠0,
所以q2+q﹣6=0,
又an>0,
所以q=2.
由S3= ,
解得a1= ,
所以通項(xiàng)公式為an= 2n1=2n2
(Ⅱ)bn=
=
=
=
=
所以Tn=b1+b2+b3+…+bn
= (1﹣ + + +…+
= (1﹣ )<
【解析】(Ⅰ)根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì)即可求出公比,問(wèn)題得以解決;(Ⅱ)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)和裂項(xiàng)求和以及放縮法即可求出答案.
【考點(diǎn)精析】掌握等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知).

(1)當(dāng)時(shí),求關(guān)于的不等式的解集;

(2)若fx)是偶函數(shù),求k的值;

(3)在(2)條件下,設(shè),若函數(shù)的圖象有公共點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為兩個(gè)不同的平面,,為兩條不同的直線(xiàn),下列命題中正確的是( )

①若,,則 ②若,,則

③若,,則 ④若,,則.

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在圓x2+y2﹣4x+2y=0內(nèi),過(guò)點(diǎn)E(1,0)的最長(zhǎng)弦和最短弦分別是AC和BD,則四邊形ABCD的面積為(
A.
B.6
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù).

(Ⅰ)當(dāng)時(shí),解關(guān)于x的不等式;

(Ⅱ)若不等式的解集為D,且,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且過(guò)定點(diǎn)M(1, ).
(1)求橢圓C的方程;
(2)已知直線(xiàn)l:y=kx﹣ (k∈R)與橢圓C交于A、B兩點(diǎn),試問(wèn)在y軸上是否存在定點(diǎn)P,使得以弦AB為直徑的圓恒過(guò)P點(diǎn)?若存在,求出P點(diǎn)的坐標(biāo)和△PAB的面積的最大值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線(xiàn)C的極坐標(biāo)方程為p2cos2θ+p2sinθ﹣2psinθ﹣3=0
(1)求直線(xiàn)l的極坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).

(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;

(2)討論函數(shù)V(r)的單調(diào)性,并確定rh為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一圓與直線(xiàn)相切于點(diǎn),且經(jīng)過(guò)點(diǎn),求此圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案