7.在下列函數(shù)中,是偶函數(shù),且在(0,+∞)內(nèi)單調(diào)遞增的是( 。
A.y=2|x|B.$y=\frac{1}{x^2}$C.y=|lgx|D.y=cosx

分析 根據(jù)偶函數(shù)的定義,偶函數(shù)定義域的特點(diǎn),二次函數(shù)的單調(diào)性,指數(shù)函數(shù)的單調(diào)性,以及減函數(shù)的定義,余弦函數(shù)的單調(diào)性便可判斷每個(gè)選項(xiàng)的正誤,從而找出正確選項(xiàng).

解答 解:A.y=2|x|,顯然該函數(shù)為偶函數(shù);x∈(0,+∞)時(shí),y=2x為增函數(shù),∴該選項(xiàng)正確;
B.$y=\frac{1}{{x}^{2}}$,x∈(0,+∞)時(shí),y=x2為增函數(shù);∴x增大時(shí),$\frac{1}{{x}^{2}}$減小,即y減小;
∴該函數(shù)在(0,+∞)上為減函數(shù),∴該選項(xiàng)錯(cuò)誤;
C.y=|lgx|的定義域?yàn)椋?,+∞),不關(guān)于原點(diǎn)對稱,不是偶函數(shù),∴該選項(xiàng)錯(cuò)誤;
D.y=cosx在(0,+∞)上沒有單調(diào)性,∴該選項(xiàng)錯(cuò)誤.
故選A.

點(diǎn)評 考查偶函數(shù)的定義,偶函數(shù)定義域的對稱性,二次函數(shù)、指數(shù)函數(shù)及余弦函數(shù)的單調(diào)性,以及減函數(shù)的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對于曲線C所在平面內(nèi)的點(diǎn)O,若存在以O(shè)為頂點(diǎn)的角θ,使得θ≥∠AOB對于曲線C上的任意兩個(gè)不同點(diǎn)A、B恒成立,則稱θ為曲線C相對于O的“界角”,并稱最小的“界角”為曲線C相對于O的“確界角”,已知曲線M:y=$\left\{\begin{array}{l}{\sqrt{1+9{x}^{2}},x≤0}\\{1+x{e}^{x-1},x>0}\end{array}\right.$,(其中e為自然對數(shù)的底數(shù)),O為坐標(biāo)原點(diǎn),則曲線M相對于O的“確界角”為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.計(jì)算:cos24°cos36°-cos66°cos54°=(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.隨機(jī)觀測生產(chǎn)某種們零件的某工廠20名工人的日加工零件數(shù)(單位:件),獲得數(shù)據(jù)如下:30,42,41,36,44,48,37,25,45,43,31,49,34,33,43,38,32,46,39,36.根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:
分組頻數(shù)頻率
[25,30]20.10
(30,35]40.20
(35,40]50.25
(40,45]mfm
(45,50]nfn
(1)確定樣本頻率分布表中m,n,fm和fn的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取3人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若$|{\begin{array}{l}{2^x}&1\\ 3&{2^x}\end{array}}|=0$,則x的值是${log}_{2}\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)m>0,點(diǎn)A(4,m)為拋物線y2=2px(p>0)上一點(diǎn),F(xiàn)為焦點(diǎn),以A為圓心|AF|為半徑的圓C被y軸截得的弦長為6,則圓C的標(biāo)準(zhǔn)方程為(x-4)2+(y-4)2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0)處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若$\frac{h(x)-g(x)}{x-{x}_{0}}$>0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點(diǎn)”,則f(x)=lnx+2x2-x的“類對稱點(diǎn)”的橫坐標(biāo)是( 。
A.eB.$\frac{1}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在數(shù)列{an}中,a1<-|k|,an+1=$\frac{1}{2}$(an+$\frac{{k}^{2}}{{a}_{n}}$)(n∈N*,k∈R,k≠0)
(1)判斷數(shù)列{an}的增減性,并說明理由;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn>2a1+(2-n)|k|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.運(yùn)行如圖所示的偽代碼,其輸出的結(jié)果S為15.

查看答案和解析>>

同步練習(xí)冊答案