12.設(shè)m>0,點(diǎn)A(4,m)為拋物線y2=2px(p>0)上一點(diǎn),F(xiàn)為焦點(diǎn),以A為圓心|AF|為半徑的圓C被y軸截得的弦長為6,則圓C的標(biāo)準(zhǔn)方程為(x-4)2+(y-4)2=25.

分析 由題意可得點(diǎn)A(4,m)到y(tǒng)軸的距離為4,又已知圓C被y軸截得的弦長為6,可求出|AF|的值,進(jìn)一步得到p的值,把點(diǎn)A(4,m)代入拋物線的方程,求得m的值,可得圓心和半徑,從而得到所求的圓的標(biāo)準(zhǔn)方程.

解答 解:由題意可得點(diǎn)A(4,m)到y(tǒng)軸的距離為4,又已知圓C被y軸截得的弦長為6,
得|AF|=$\sqrt{{4}^{2}+(\frac{6}{2})^{2}}=5$,則$4+\frac{p}{2}=5$,∴p=2.
∵點(diǎn)A(4,m)為拋物線y2=2px(p>0)上一點(diǎn),∴$m=\sqrt{2×2×4}=4$.
∴圓C的標(biāo)準(zhǔn)方程為(x-4)2+(y-4)2=25.
故答案為:(x-4)2+(y-4)2=25.

點(diǎn)評 本題主要考查拋物線的定義和標(biāo)準(zhǔn)方程的應(yīng)用,求圓的標(biāo)準(zhǔn)方程的方法,求出m的值,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實(shí)數(shù)x,y滿足x>0,y>0,x+2y=3,則$\frac{3x+y}{xy}$的最小值為$\frac{7+2\sqrt{6}}{3}$,x2+4y2+xy的最小值為$\frac{45}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,三棱錐P-ABC中,PA=PC,AB=BC,E,F(xiàn)分別是PA,AB的中點(diǎn).
(Ⅰ)求證:EF∥平面PBC;
(Ⅱ)求證:EF⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=x2+mx+n2,g(x)=x2+(m+2)x+n2+m+1,其中n∈R,若對任意的n,t∈R,f(t)和g(t)至少有一個(gè)為非負(fù)值,則實(shí)數(shù)m的最大值是(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在下列函數(shù)中,是偶函數(shù),且在(0,+∞)內(nèi)單調(diào)遞增的是( 。
A.y=2|x|B.$y=\frac{1}{x^2}$C.y=|lgx|D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),A,B是橢圓與x軸的兩個(gè)交點(diǎn),M為橢圓C的上頂點(diǎn),設(shè)直線MA的斜率為k1,直線MB的斜率為k2,k1k2=-$\frac{2}{3}$
(Ⅰ)求橢圓C的離心率;
(Ⅱ)設(shè)直線l與x軸交于點(diǎn)D(-$\sqrt{3}$,0),交橢圓于P、Q兩點(diǎn),且滿足$\overrightarrow{DP}$=3$\overrightarrow{QD}$,當(dāng)△OPQ的面積最大時(shí),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線C的方程是mx2+ny2=1(m>0,n>0),且曲線C過A($\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{2}$),B($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{3}}{3}$)兩點(diǎn),O為坐標(biāo)原點(diǎn)
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)M(x1,y1),N(x2,y2),向量$\overrightarrow{p}$($\sqrt{m}$x1,$\sqrt{n}$y1),$\overrightarrow{q}$=($\sqrt{m}$x2,$\sqrt{n}$y2),且$\overrightarrow{p}$•$\overrightarrow{q}$=0,若直線MN過點(diǎn)(0,$\frac{\sqrt{3}}{2}$),求直線MN的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x,y滿足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-1≤0}\\{x≥0}\\{\;}\end{array}\right.$,則z=5x-3y+1的最小值為(  )
A.-2B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,則z=2x-y的最大值為( 。
A.$\frac{3}{2}$B.-1C.2D.-3

查看答案和解析>>

同步練習(xí)冊答案