15.隨機(jī)觀測(cè)生產(chǎn)某種們零件的某工廠20名工人的日加工零件數(shù)(單位:件),獲得數(shù)據(jù)如下:30,42,41,36,44,48,37,25,45,43,31,49,34,33,43,38,32,46,39,36.根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:
分組頻數(shù)頻率
[25,30]20.10
(30,35]40.20
(35,40]50.25
(40,45]mfm
(45,50]nfn
(1)確定樣本頻率分布表中m,n,fm和fn的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取3人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.

分析 (1)利用頻數(shù)定義能求出m,n,利用頻率計(jì)算公式能求出fm,fn
(2)由頻率分布直方圖,能畫出頻率分布列圖.
(3)根據(jù)題意ξ~B(3,0.2),由此能求出至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.

解答 解:(1)∵20名工人的日加工零件數(shù)(單位:件),獲得數(shù)據(jù)如下:
30,42,41,36,44,48,37,25,45,43,31,49,34,33,43,38,32,46,39,36.
∴(40,50]區(qū)間內(nèi)的頻數(shù)m=6,(45,50]區(qū)間內(nèi)的頻數(shù)n=3,
∴fm=$\frac{6}{20}$=0.3,fn=$\frac{3}{20}$=0.15.
(2)由頻率分布直方圖,畫出頻率分布列如下圖:
(3)根據(jù)樣本頻率分布直方圖,每人的日加工零件數(shù)落在區(qū)間(30,35]的頻率為0.2,
設(shè)所取的3人中,日加工零件數(shù)落在區(qū)間(30,35]的人數(shù)為ξ,則ξ~B(3,0.2),
P(ξ≥1)=1-P(ξ=0)=1-(1-0.2)3=0.488.
∴至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率為0.488.

點(diǎn)評(píng) 本題考查頻率分布直方圖、頻率分布表的性質(zhì)及應(yīng)用,考查概率的求法,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2-$\frac{1}{2}$x+2ln(x+1)
(Ⅰ)求函數(shù)f(x)的圖象在點(diǎn)(0,f(0))的切線方程;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)-ln(x+1),當(dāng)x∈[0,+∞)時(shí),h(x)≤$\frac{1}{2}$x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.過橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點(diǎn)F2的直線交橢圓于A,B兩點(diǎn),F(xiàn)1為其左焦點(diǎn),已知△AF1B的周長(zhǎng)為$4\sqrt{3}$,橢圓的離心率為$\frac{{\sqrt{6}}}{3}$.
(1)求橢圓C的方程;
(2)設(shè)P為橢圓C的下頂點(diǎn),橢圓C與直線$y=\frac{{\sqrt{3}}}{3}x+m$相交于不同的兩點(diǎn)M、N.當(dāng)|PM|=|PN|時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,三棱錐P-ABC中,PA=PC,AB=BC,E,F(xiàn)分別是PA,AB的中點(diǎn).
(Ⅰ)求證:EF∥平面PBC;
(Ⅱ)求證:EF⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤4}\\{y≥3}\\{\;}\end{array}\right.$所表示的平面區(qū)域的面積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=x2+mx+n2,g(x)=x2+(m+2)x+n2+m+1,其中n∈R,若對(duì)任意的n,t∈R,f(t)和g(t)至少有一個(gè)為非負(fù)值,則實(shí)數(shù)m的最大值是( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在下列函數(shù)中,是偶函數(shù),且在(0,+∞)內(nèi)單調(diào)遞增的是( 。
A.y=2|x|B.$y=\frac{1}{x^2}$C.y=|lgx|D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線C的方程是mx2+ny2=1(m>0,n>0),且曲線C過A($\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{2}$),B($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{3}}{3}$)兩點(diǎn),O為坐標(biāo)原點(diǎn)
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)M(x1,y1),N(x2,y2),向量$\overrightarrow{p}$($\sqrt{m}$x1,$\sqrt{n}$y1),$\overrightarrow{q}$=($\sqrt{m}$x2,$\sqrt{n}$y2),且$\overrightarrow{p}$•$\overrightarrow{q}$=0,若直線MN過點(diǎn)(0,$\frac{\sqrt{3}}{2}$),求直線MN的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{(x+2)(x+a)}{x}$是奇函數(shù),則實(shí)數(shù)a=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案