A. | $\frac{{41\sqrt{41}π}}{48}$ | B. | 12π | C. | $\frac{25π}{4}$ | D. | $\frac{41π}{4}$ |
分析 由三視圖知:幾何體為三棱錐S-ABC,且三棱錐的一個(gè)側(cè)面SAC垂直于底面ABC,高SD=2,AD=DC=1.
如圖:△ABC的外接圓的圓心為斜邊AC的中點(diǎn)E,設(shè)該幾何體的外接球的球心為O.OE⊥底面ABC,設(shè)OE=x,外接球的半徑為R,利用勾股定理即可得出.
解答 解:由三視圖知:幾何體為三棱錐S-ABC,且三棱錐的一個(gè)側(cè)面SAC垂直于底面ABC,高SD=2,AD=DC=1.
底面為等腰直角三角形,直角邊長(zhǎng)為2,如圖:
∴△ABC的外接圓的圓心為斜邊AC的中點(diǎn)E,設(shè)該幾何體的外接球的球心為O.
OE⊥底面ABC,
設(shè)OE=x,外接球的半徑為R,
則${x}^{2}+(\sqrt{2})^{2}$=1+(2-x)2,
解得x=$\frac{3}{4}$.
∴R2=$\frac{41}{16}$,
∴外接球的表面積S=4π×R2=$\frac{41π}{4}$.
故答案為:$\frac{41π}{4}$.
點(diǎn)評(píng) 本題考查了三棱錐的三視圖、空間位置關(guān)系、外接球的性質(zhì)、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
推銷(xiāo)員編號(hào) | 1 | 2 | 3 | 4 | 5 |
工作年限x年 | 3 | 5 | 6 | 7 | 9 |
推銷(xiāo)金額y萬(wàn)元 | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | $4+3\sqrt{3}$ | C. | $\frac{{5\sqrt{3}}}{3}$ | D. | $12+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 40 | B. | 20 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com