16.函數(shù)$y=[sin(\frac{π}{4}-x)-sin\frac{π}{4}]•[cos(\frac{π}{4}+x)+cos\frac{π}{4}]$是( 。
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

分析 使用兩角和差的三角函數(shù)公式化簡函數(shù)解析式.

解答 解:y=[$\frac{\sqrt{2}}{2}$(cosx-sinx)-$\frac{\sqrt{2}}{2}$]•[$\frac{\sqrt{2}}{2}$(cosx-sinx)+$\frac{\sqrt{2}}{2}$]=$\frac{1}{2}$(cosx-sinx)2-$\frac{1}{2}$=-$\frac{1}{2}$sin2x.
∴函數(shù)y的周期T=$\frac{2π}{2}=π$.
∵y=sinx是奇函數(shù),∴y=-$\frac{1}{2}$sin2x為奇函數(shù).
故選A.

點評 本題考查了三角函數(shù)的恒等變換,正弦函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知離散型隨機變量X的分布列如表:若E(X)=0,D(X)=1,則P(X<1)等于( 。
X-1012
Pabc$\frac{1}{12}$
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題中正確的是( 。
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2-x=0的必要不充分條件
C.直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一個袋中有若干個紅球與白球,一次試驗為從中摸出一個球并放回袋中,摸出紅球概率為p,摸出白球概率為q,摸出紅球加1分,摸出白球減1分,現(xiàn)記“n次試驗總得分為Sn”.
(Ⅰ)當$p=q=\frac{1}{2}$時,記ξ=|S3|,求ξ的分布列及數(shù)學(xué)期望;
(Ⅱ)當$p=\frac{1}{3},q=\frac{2}{3}$時,求S8=2且Si≥0(i=1,2,3,4)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)全集U={x∈N|x≥1},集合A={x∈N|x2≥3},則∁UA=( 。
A.B.{1}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x≥1}\\{x-2y≤0}\\{y-2≤0}\end{array}}\right.$,則z=x+2y-3的最大值為(  )
A.8B.5C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某學(xué)校社團招聘工作人員,設(shè)置A、B兩組測試項目供應(yīng)聘人員選擇,甲、乙、丙、丁四人參加應(yīng)聘,其中甲、乙、丙三人各自獨立參加A組測試,已知甲、乙兩人各自通過測試的概率均為$\frac{1}{2}$,丙通過測試的概率為$\frac{3}{5}$.丁參加B組測試,已知B組共有6道試題,丁會做其中的4道題.丁只能且必須選擇4道題作答,答對3道題則競聘成功.
(Ⅰ)求丁應(yīng)聘成功的概率;
(Ⅱ)記測試通過的總?cè)藬?shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\vec a=(2,-4)$,$\vec b=(-3,m)$.若$|\overrightarrow a||\overrightarrow b|+\overrightarrow a•\overrightarrow b=0$,則實數(shù)m=( 。
A.$\frac{3}{2}$B.3C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)的周期為1.5,且f(1)=20,則f(10)的值是20.

查看答案和解析>>

同步練習(xí)冊答案