11.設(shè)全集U={x∈N|x≥1},集合A={x∈N|x2≥3},則∁UA=(  )
A.B.{1}C.{1,2}D.{1,2,3}

分析 直接利用集合的補(bǔ)集求解即可.

解答 解:全集U={x∈N|x≥1},集合A={x∈N|x2≥3},則∁UA={1}.
故選:B.

點(diǎn)評(píng) 本題考查集合的基本運(yùn)算,補(bǔ)集的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為60°的兩個(gè)單位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,$\overrightarrow{a}⊥\overrightarrow$,則λ=( 。
A.$\frac{1}{4}$B.4C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.(x+1)2($\frac{1}{x}$-1)5的展開式中常數(shù)項(xiàng)為( 。
A.21B.19C.9D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在A、B兩地開通高鐵路線,根據(jù)數(shù)十年鐵路數(shù)據(jù)統(tǒng)計(jì):因天災(zāi)人禍、列車故障發(fā)生事故的概率分別為方程x2-$\frac{33}{{10}^{3}}$x+$\frac{9}{{10}^{5}}$=0的兩實(shí)根,且兩類事故的發(fā)生相互獨(dú)立,
(1)求一列車從A到B開行中,不發(fā)生事故的概率是多少?(小數(shù)后保留兩位數(shù)字)
(2)一天內(nèi),A、B兩地來回往返開行約5次,求一年(每月按30天算)內(nèi)因上述兩類原因不發(fā)生事故的列車數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow a=({cos\frac{3x}{2},sin\frac{3x}{2}}),\overrightarrow b=({cos\frac{x}{2},sin\frac{x}{2}})$.
(1)已知$\overrightarrow a$∥$\overrightarrow b$且$x∈[{0,\frac{π}{2}}]$,求x;
(2)若$f(x)=\overrightarrow a•\overrightarrow b$,寫出f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$y=[sin(\frac{π}{4}-x)-sin\frac{π}{4}]•[cos(\frac{π}{4}+x)+cos\frac{π}{4}]$是( 。
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,輸出的S的值為30,則輸入的n為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.一個(gè)摸球游戲,規(guī)則如下:在一不透明的紙盒中,裝有6個(gè)大小相同、顏色各異的玻璃球.參加者交費(fèi)1元可玩1次游戲,從中有放回地摸球3次.參加者預(yù)先指定盒中的某一種顏色的玻璃球,然后摸球.當(dāng)所指定的玻璃球不出現(xiàn)時(shí),游戲費(fèi)被沒收;當(dāng)所指定的玻璃球出現(xiàn)1次,2次,3次時(shí),參加者可相應(yīng)獲得游戲費(fèi)的0倍,1倍,k倍的獎(jiǎng)勵(lì)(k∈N*),且游戲費(fèi)仍退還給參加者.記參加者玩1次游戲的收益為X元.
(1)求概率P(X=0)的值;
(2)為使收益X的數(shù)學(xué)期望不小于0元,求k的最小值.
(注:概率學(xué)源于賭博,請(qǐng)自覺遠(yuǎn)離不正當(dāng)?shù)挠螒颍。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\overrightarrow{a}$=(1,1),$\overrightarrow$=(x,y),則$\overrightarrow$與$\overrightarrow$-$\overrightarrow{a}$的夾角為$\frac{π}{4}$,則|$\overrightarrow$-$\overrightarrow{a}$|的最大值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案