已知奇函數(shù)f(x)在(0,+∞)上是增函數(shù),則不等式f(2x+5)<f(x+2)的解集為
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專(zhuān)題:不等式的解法及應(yīng)用
分析:利用函數(shù)的單調(diào)性,結(jié)合單調(diào)區(qū)間推出不等式,即可求解x的范圍.
解答: 解:奇函數(shù)f(x)在(0,+∞)上是增函數(shù),
不等式f(2x+5)<f(x+2)化為:
2x+5<x+2
2x+5>0
,或
2x+5<x+2
x+2<0
,
解:
2x+5<x+2
2x+5>0
得:x∉∅,
解:
2x+5<x+2
x+2<0
得:x<-3.
不等式f(2x+5)<f(x+2)的解集為{x|x<-3}.
故答案為:{x|x<-3}.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,注意單調(diào)區(qū)間,函數(shù)的連續(xù)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=loga(x-2)+1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)P,則P點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)同時(shí)具有以下兩個(gè)性質(zhì):①f(x)是偶函數(shù);②對(duì)任意實(shí)數(shù)x,都有f(x-
π
4
)=f(x+
π
4
),
則下列函數(shù)中,符合上述條件的有
 
.(填序號(hào))
①f(x)=cos4x    ②f(x)=sin(2x+
π
2
)    ③f(x)=sin(4x+
π
2
)  ④f(x)=cos(
2
-4x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=xex,定義f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N*
經(jīng)計(jì)算f1(x)=(x+1)ex,f2(x)(x+2)ex,f3(x)=(x+3)ex,…,照此規(guī)律,則fn(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=logax-blog2x(a>0,a≠1),若f(4)=1,則f(
1
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|0<x<2},B={x|x<1},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=ax+1在區(qū)間(0,1)內(nèi)恰有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形的弧長(zhǎng)和面積的數(shù)值都是2,則其圓心角的正的弧度數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a=log 
1
2
3,b=log 
1
3
2,c=(
1
2
0.3,則(  )
A、a<b<c
B、a<c<b
C、b<c<a
D、b<a<c

查看答案和解析>>

同步練習(xí)冊(cè)答案