4.若復(fù)數(shù)z=(1+mi)(2-i)(i是虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)m的值為-2.

分析 根據(jù)純虛數(shù)的概念,確定復(fù)數(shù)的實(shí)部和虛部滿足的條件即可.

解答 解:z=(1+mi)(2-i)=2+m+(m-1)i,
∵復(fù)數(shù)z=(1+mi)(2-i)(i是虛數(shù)單位)是純虛數(shù),
∴2+m=0,
即m=-2,
故答案為:-2.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)的有關(guān)概念,要求熟練掌握復(fù)數(shù)的相關(guān)概念,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.判斷函數(shù)f(x)=2x-5在(-∞,+∞)內(nèi)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在如圖所示的四邊形ABCD中,∠BAD=90°,∠BCD=120°,∠BAC=60°,AC=2,記∠ABC=θ.
(Ⅰ)求用含θ的代數(shù)式表示DC;
(Ⅱ)求△BCD面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知角α為第二象限角,$cos({\frac{π}{2}-α})=\frac{4}{5}$,則cosα=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且2sin(A-B)=asinA-bsinB,a≠b.
(Ⅰ)求邊c;
(Ⅱ)若△ABC的面積為1,且tanC=2,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.用鐵皮制作一個(gè)容積為$\frac{1000π}{3}$cm3的無(wú)蓋圓錐形容器,如圖,若圓錐的母線與底面所稱的角為45°,求制作該容器需要多少面積的鐵皮(鐵皮街接部分忽略不計(jì),結(jié)果精確到0.1cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列四種說(shuō)法中,正確的個(gè)數(shù)有( 。
①命題“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得${x_0}^2-3{x_0}-2≤0$”;
②?m∈R,使$f(x)=m{x^{{m^2}+2m}}$是冪函數(shù),且在(0,+∞)上是單調(diào)遞增;
③不過(guò)原點(diǎn)(0,0)的直線方程都可以表示成$\frac{x}{a}+\frac{y}=1$;
④回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為$\widehat{y}$=1.23x+0.08.
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知不等式組$\left\{\begin{array}{l}3x+4y-10≥0\\ x≤4\\ y≤3\end{array}\right.$表示區(qū)域D,過(guò)區(qū)域D中任意一點(diǎn)P作圓x2+y2=1的兩條切線且切點(diǎn)分別為A,B,當(dāng)∠PAB最小時(shí),cos∠PAB=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為頂點(diǎn),x軸非負(fù)半軸為始邊,任作一角,該角的終邊OA落在第一象限的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案