14.在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為頂點(diǎn),x軸非負(fù)半軸為始邊,任作一角,該角的終邊OA落在第一象限的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

分析 根據(jù)幾何概型的概率公式進(jìn)行計(jì)算即可.

解答 解:平面直角坐標(biāo)系共有4個(gè)象限,在一個(gè)周期[0,2π),內(nèi),角的終邊OA落在第一象限的角為(0,$\frac{π}{2}$),
則對應(yīng)的概率P=$\frac{\frac{π}{2}}{2π}$=$\frac{1}{4}$,
故選:C

點(diǎn)評 本題主要考查幾何概型的概率的計(jì)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若復(fù)數(shù)z=(1+mi)(2-i)(i是虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.拋物線x2=-14y的焦點(diǎn)坐標(biāo)是(0,-$\frac{7}{2}$),準(zhǔn)線方程是y=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知AB是半徑為R的圓O內(nèi)的一條定弦,且AB=$\sqrt{3}$R,現(xiàn)過點(diǎn)A任作一條射線交圓周于點(diǎn)C(異于A,B),求△ABC是銳角三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知△ABC的頂點(diǎn)分別為A(2,1),B(3,2),C(-3,-1),BC邊上的高為AD,則點(diǎn)D的坐標(biāo)為( 。
A.(-$\frac{9}{5}$,$\frac{7}{5}$)B.($\frac{9}{2}$,-$\frac{7}{5}$)C.($\frac{9}{5}$,$\frac{7}{5}$)D.(-$\frac{9}{2}$,-$\frac{7}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a>0,b>0,m=lg$\frac{\sqrt{a}+\sqrt}{2}$,n=lg$\sqrt{\frac{a+b}{2}}$,則m與n的關(guān)系為( 。
A.m≤nB.m<nC.m≥nD.m>n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,若a2+b2=4a+2b-5,且a2=b2+c2-bc.
(1)求c;
(2)求sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)f(x)=$\left\{\begin{array}{l}{-2x+1,x<0}\\{g(x),x>0}\end{array}\right.$是奇函數(shù),則f-1(x)=$\left\{\begin{array}{l}{\frac{1-x}{2},x>1}\\{-\frac{x+1}{2},x<-1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知△ABC的面積為$\frac{\sqrt{3}}{4}$(a2+c2-b2),則sinB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案