已知實數(shù)x、y滿足y=-2x+8,且2≤x≤3,求
y
x
的最大值和最小值.
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出對應(yīng)的圖象,利于斜率的公式 即可得到結(jié)論.
解答: 解:作出對應(yīng)的曲線,則對應(yīng)的圖象為線段AB,
當x=2時,y=-2×2+8=4,即A(2,4),
當x=3時,y=-2×3+8=2,即B(3,2),
y
x
的最大值為kOA=
4
2
=2

最小值為kOB=
2
3
點評:本題主要考查直線斜率的求解,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知θ為第一象限角,若將角θ的終邊逆時針旋轉(zhuǎn)
π
2
,則它與單位圓的交點坐標是( 。
A、(cosθ,sinθ)
B、(cosθ,-sinθ)
C、(sinθ,-cosθ)
D、(-sinθ,cosθ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知sinθ+cosθ=
1
4
,則sin2θ等于(  )
A、-
15
4
B、
15
4
C、-
15
16
D、
15
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,且nan+1=2Sn,數(shù)列{bn}滿足b1=
1
2
,b2=
1
4
,對任意n∈N*.都有
b
2
n+1
=bn•bn+2
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令Tn=a1b1+a2b2+…+anbn,求證:
1
2
≤Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-mx2-x+1,其中m為實數(shù).
(1)當m=1時,求函數(shù)f(x)在區(qū)間[-1,
4
3
]上的最大值和最小值;
(2)若對一切的實數(shù)x,有f′(x)≥|x|-
7
4
恒成立,其中f′(x)為f(x)的導(dǎo)函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(a+blnx)在(1,f(1))處的切線方程為2x-y-1=0.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)當x>0時,f(x+1)>tx恒成立,求整數(shù)t的最大值;
(Ⅲ)試證明:(1+2)(1+22)(1+23)…(1+2n)>e2n-3(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=
1
2
,an+1=
1
2-an
(n∈N*
(Ⅰ)求證:{
1
an-1
}為等差數(shù)列,并求出{an}的通項公式;
(Ⅱ)設(shè)bn=
1
an
-1,數(shù)列{bn}的前n項和為Bn,對任意n≥2都有B3n-Bn
m
20
成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
)+2cos2x-1;
(1)求f(x)在[-
π
2
,π]上的單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知f(A)=
1
2
,b,a,c成等差數(shù)列,且
AB
AC
=9,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式
x2-4x+1
 3x2-7x+2
≥0.

查看答案和解析>>

同步練習(xí)冊答案