分析 由f(-2)=f(0),f(-1)=-3可解得b=2,c=-2;從而化簡f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-2,x≤0}\\{2,x>0}\end{array}\right.$,再分別解方程f(x)=x可得.
解答 解:∵f(-2)=f(0),f(-1)=-3,
∴-2+0=-b,1-b+c=-3,
解得,b=2,c=-2,
故f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-2,x≤0}\\{2,x>0}\end{array}\right.$,
①當(dāng)x>0時(shí),
方程f(x)=x可化為2=x,
即x=2;
②當(dāng)x≤0時(shí),
方程f(x)=x可化為x2+2x-2=x,
解得,x=-2或x=1(舍去);
綜上所述,方程f(x)=x的解為2或-2.
點(diǎn)評 本題考查了分段函數(shù)的應(yīng)用及二次函數(shù)的應(yīng)用,同時(shí)考查了分類討論的思想應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,+∞) | C. | (1,$\root{3}{4}$) | D. | ($\root{3}{4}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com