5.已知等差數(shù)列{an}滿足a12+a102≤10,試對所有滿足條件的數(shù)列{an},求S=a10+a11+…+a19的最大值50.

分析 設(shè)等差數(shù)列的公差為d,易得(a10-9d)2+a102=10,由求和公式可得a10=$\frac{S-45d}{10}$,代入(a10-9d)2+a102=10整理可得關(guān)于d的不等式,由△≥0可得S的不等式,解不等式可得S的范圍,可得最大值.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵a12+a102≤10,∴(a10-9d)2+a102≤10,
又∵S=a10+a11+…+a19=10a10+45d,
∴a10=$\frac{S-45d}{10}$,
代入(a10-9d)2+a102≤10整理可得(1352+452)d2-360dS+2S2-1000≤0,
由關(guān)于d的二次不等式有解可得△=3602S2-4(1352+452)(2S2-1000)≥0,
化簡可得S2≤2500,解得S≤50,
∴S=a10+a11+…+a19的最大值為50
故答案為:50

點評 本題考查等差數(shù)列的性質(zhì)和二次函數(shù)方程根的存在性,屬中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}}\right.$,則x+y-1的取值范圍是(  )
A.[-1,3]B.[0,4]C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{sin2x}{cosx}$+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$),則其最小值為( 。
A.1B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若正方體ABCD-A1B1C1D1的棱長為1,則三棱錐B-B1C1D的體積為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c(x≤0)}\\{2(x>0)}\end{array}\right.$,若f(-2)=f(0),f(-1)=-3,求關(guān)于x的方程f(x)=x的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a∈R,f(x)=(x2-4)(x-a).
(1)求f′(x);
(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值;
(3)若f(x)在(-∞,-2]和[2,+∞)上是單調(diào)遞增的,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(x-1)10的展開式的第6項系數(shù)是-252.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的最小正周期及對稱中心.
(1)f(x)=$\sqrt{co{s}^{2}x-co{s}^{4}x}$;
(2)f(x)=cos$\frac{π}{2}$x•cos[$\frac{π}{2}$(x-1)];
(3)f(x)=sinx•cosx-2sin3xcosx;
(4)f(x)=sin6x+cos6x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)=1+$\frac{m}{{e}^{x}-1}$(e為自然對數(shù)的底數(shù))是奇函數(shù),則實數(shù)m的值為2.

查看答案和解析>>

同步練習(xí)冊答案