14.已知數(shù)列{an}滿足an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),且a1=2,則a2015=-$\frac{1}{2}$.

分析 通過(guò)計(jì)算出前幾項(xiàng)的值確定周期,進(jìn)而可得結(jié)論.

解答 解:依題意,a2=$\frac{1+{a}_{1}}{1-{a}_{1}}$=$\frac{1+2}{1-2}$=-3
a3=$\frac{1+{a}_{2}}{1-{a}_{2}}$=$\frac{1-3}{1+3}$=-$\frac{1}{2}$
a4=$\frac{1+{a}_{3}}{1-{a}_{3}}$=$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$
a5=$\frac{1+{a}_{4}}{1-{a}_{4}}$=$\frac{1+\frac{1}{3}}{1-\frac{1}{3}}$=2,
∴數(shù)列{an}是以4為周期的周期數(shù)列,
∵2015=503×4+3,
∴a2015=a3=-$\frac{1}{2}$,
故答案為:-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.分別畫出分段函數(shù):
①y=(|x|)2-4|x|+3
②y=|x2-4x+3|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如果雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1右支上總存在到雙曲線的中心與右焦點(diǎn)距離相等的兩個(gè)相異點(diǎn),則雙曲線離心率的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求方程x2+(m+2)x+m+1=0(m∈Z)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.世界人口在過(guò)去40年內(nèi)翻了一番,則每年人口平均增長(zhǎng)率是(參考數(shù)據(jù)lg2≈0.3010,100.0075≈1.017)( 。
A.1.5%B.1.6%C.1.7%D.1.8%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在數(shù)列{an}中,a1=1,an=an-1+4n(n≥2),求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.作出函數(shù)y=$\frac{x+3}{x-1}$的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知集合A={x|-1<x<4},B={x|2a≤x≤a+3},若B⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n(n∈N+)展開(kāi)式的前三項(xiàng)系數(shù)成等差數(shù)列.
(1)求n的值;
(2)求這個(gè)展開(kāi)式的一次項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案